RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants

被引:97
作者
Huettel, Bruno [1 ]
Kanno, Tatsuo [1 ]
Daxinger, Lucia [1 ]
Bucher, Etienne [1 ]
van der Winden, Johannes [1 ]
Matzke, Antonius J. M. [1 ]
Matzke, Marjorl [1 ]
机构
[1] Austrian Acad Sci, Gregor Mendel Inst Mol Plant Biol, A-1030 Vienna, Austria
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION | 2007年 / 1769卷 / 5-6期
基金
奥地利科学基金会;
关键词
DNA demethylation; heterochromatin; Pol IV; RNA-directed DNA methylation; RNAi; transcriptional gene silencing;
D O I
10.1016/j.bbaexp.2007.03.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-directed DNA methylation, which is one of several RNAi-mediated pathways in the nucleus, has been highly elaborated in the plant kingdom. RNA-directed DNA methylation requires for the most part conventional DNA methyltransferases, histone modifying enzymes and RNAi proteins; however, several novel, plant-specific proteins that are essential for this process have been identified recently. DRD1 (defective in RNA-directed DNA methylation) is a putative SWI2/SNF2-like chromatin remodelling protein; DRD2 and DRD3 (renamed NRPD2a and NRPD1b, respectively) are subunits of Pol IVb, a putative RNA polymerase found only in plants. Interestingly, DRD1 and Pol IVb appear to be required not only for RNA-directed de novo methylation, but also for full erasure of methylation when the RNA trigger is withdrawn. These proteins thus have the potential to facilitate dynamic regulation of DNA methylation. Prominent targets of RNA-directed DNA methylation in the Arabidopsis thaliana genome include retrotransposon long terminal repeats (LTRs), which have bidirectional promoter/enhancer activities, and other types of intergenic transposons and repeats. Intergenic solitary LTRs that are targeted for reversible methylation by the DRD1/Pol IVb pathway can potentially act as switches or rheostats for neighboring plant genes. The resulting alterations in gene expression patterns may promote physiological flexibility and adaptation to the environment. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 374
页数:17
相关论文
共 114 条
[1]   Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation [J].
Agius, Fernanda ;
Kapoor, Avnish ;
Zhu, Jian-Kang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (31) :11796-11801
[2]   An RNA-dependent RNA polymerase is required for paramutation in maize [J].
Alleman, Mary ;
Sidorenko, Lyudmila ;
McGinnis, Karen ;
Seshadri, Vishwas ;
Dorweiler, Jane E. ;
White, Joshua ;
Sikkink, Kristin ;
Chandler, Vicki L. .
NATURE, 2006, 442 (7100) :295-298
[3]   HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA [J].
Aufsatz, W ;
Mette, MF ;
van der Winden, J ;
Matzke, M ;
Matzke, AJM .
EMBO JOURNAL, 2002, 21 (24) :6832-6841
[4]   RNA-directed DNA methylation in Arabidopsis [J].
Aufsatz, W ;
Mette, MF ;
van der Winden, J ;
Matzke, AJM ;
Matzke, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :16499-16506
[5]   MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome [J].
Bao, N ;
Lye, KW ;
Barton, MK .
DEVELOPMENTAL CELL, 2004, 7 (05) :653-662
[6]   Altered expression of the Arabidopsis ortholog of DCL affects normal plant development [J].
Bellaoui, M ;
Gruissem, W .
PLANTA, 2004, 219 (05) :819-826
[7]   Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis [J].
Borsani, O ;
Zhu, JH ;
Verslues, PE ;
Sunkar, R ;
Zhu, JK .
CELL, 2005, 123 (07) :1279-1291
[8]   Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors [J].
Brzeski, J ;
Jerzmanowski, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (02) :823-828
[9]   Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing [J].
Buhler, Marc ;
Verdel, André ;
Moazed, Danesh .
CELL, 2006, 125 (05) :873-886
[10]   The CTD code [J].
Buratowski, S .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :679-680