Full twisted Poincare symmetry and quantum field theory on Moyal-Weyl spaces

被引:90
作者
Fiore, Gaetano
Wess, Julius
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Apllicat, I-80125 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Complesso MSA, I-80126 Naples, Italy
[3] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[4] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
[5] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[6] Univ Hamburg, Inst Theoret Phys 2, D-2000 Hamburg, Germany
[7] DESY, D-27761 Hamburg, Germany
来源
PHYSICAL REVIEW D | 2007年 / 75卷 / 10期
关键词
D O I
10.1103/PhysRevD.75.105022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore some general consequences of a proper, full enforcement of the "twisted Poincare" covariance of Chaichian et al., Wess, Koch et al., and Oeckl upon many-particle quantum mechanics and field quantization on a Moyal-Weyl noncommutative space(time). This entails the associated braided tensor product with an involutive braiding (or star-tensor product in the parlance of Aschieri et al.) prescription for any coordinate pair of x, y generating two different copies of the space(time); the associated nontrivial commutation relations between them imply that x-y is central and its Poincare transformation properties remain undeformed. As a consequence, in quantum field theory (QFT) (even with space-time noncommutativity) one can reproduce notions (like spacelike separation, time- and normal-ordering, Wightman or Green's functions, etc.), impose constraints (Wightman axioms), and construct free or interacting theories which essentially coincide with the undeformed ones, since the only observable quantities involve coordinate differences. In other words, one may thus well realize quantum mechanics (QM) and QFT's where the effect of space(time) noncommutativity amounts to a practically unobservable common noncommutative translation of all reference frames.
引用
收藏
页数:13
相关论文
共 63 条
[1]   Noncommutative quantization for noncommutative field theory [J].
Abe, Yasumi .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (06) :1181-1200
[2]   General properties of non-commutative field theories [J].
Alvarez-Gaumé, L ;
Vázquez-Mozo, MA .
NUCLEAR PHYSICS B, 2003, 668 (1-2) :293-321
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], [No title captured]
[5]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[6]   Noncommutative geometry and gravity [J].
Aschieri, Paolo ;
Dimitrijevic, Marija ;
Meyer, Frank ;
Wess, Julius .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (06) :1883-1911
[7]   Field theory on noncommutative spacetimes: Quasiplanar Wick products [J].
Bahns, D ;
Doplicher, S ;
Fredenhagen, K ;
Piacitelli, G .
PHYSICAL REVIEW D, 2005, 71 (02) :025022-1
[8]   Ultraviolet finite quantum field theory on quantum spacetime [J].
Bahns, D ;
Doplicher, S ;
Fredenhagen, K ;
Piacitelli, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 237 (1-2) :221-241
[9]   On the unitarity problem in space/time noncommutative theories [J].
Bahns, D ;
Doplicher, S ;
Fredenhagen, K ;
Piacitelli, G .
PHYSICS LETTERS B, 2002, 533 (1-2) :178-181
[10]   Statistics and UV-IR mixing with twisted Poincare invariance [J].
Balachandran, A. P. ;
Govindarajan, T. R. ;
Mangano, G. ;
Pinzul, A. ;
Qureshi, B. A. ;
Vaidya, S. .
PHYSICAL REVIEW D, 2007, 75 (04)