Spaces of coinvariants and fusion product II.: (sl)over-cap2 character formulas in terms of Kostka polynomials

被引:12
作者
Feigin, B
Jimbo, M
Kedem, R
Loktev, S
Miwa, T
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[3] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[4] Inst Theoret & Expt Phys, Moscow 117259, Russia
[5] Independent Univ Moscow, Moscow 121002, Russia
[6] Kyoto Univ, Grad Sch Sci, Div Math, Kyoto 6068502, Japan
基金
日本学术振兴会;
关键词
D O I
10.1016/j.jalgebra.2004.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we continue our study of the Hilbert polynomials of coinvariants begun in our previous work [B. Feigin et al., math. QA/0205324, 2002]. We describe the sl(n) fusion products for symmetric tensor representations following the method of [B. Feigin, E. Feigin, math. QA/0201111, 2002], and show that their Hilbert polynomials are A(n-1)-supernomials. We identify the fusion product of arbitrary irreducible sl(n)-modules with the fusion product of their restriction to sl(n-1). Then using the equivalence theorem from [B. Feigin et al., math. QA/0205324, 2002] and the results above for sl(3) we give a fermionic formula for the Hilbert polynomials of a class of sl(2) coinvariants in terms of the level-restricted Kostka polynomials. The coinvariants under consideration are a generalization of the coinvariants studied in [B. Feigin et al., Transfom. Groups 6 (2001) 2552; math.QA/0009198, 2000; math.QA/0012190, 2000]. Our formula differs from the fermionic formula established in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; math. QA/0009198, 2000; math.QA/0012190, 2000] and implies the alternating sum formula conjectured in [B. Feigin, S. Loktev, math.QA/9812093, 1998; Amer. Math. Sci. Transl. 194 (1999) 61-79] for this case. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 179
页数:33
相关论文
共 12 条
[1]  
Feigin B, 2001, TRANSFORM GROUPS, V6, P25, DOI 10.1007/BF01236061
[2]  
Feigin B., 1999, AM MATH SOC TRANSL 2, V194, P61
[3]  
FEIGIN B, 2002, MATHQA0201111
[4]  
FEIGIN B, 2002, MATHQA0205324
[5]   Character formulae of (sl)over-capn-modules and inhomogeneous paths [J].
Hatayama, G ;
Kirillov, AN ;
Kuniba, A ;
Okado, M ;
Takagi, T ;
Yamada, Y .
NUCLEAR PHYSICS B, 1998, 536 (03) :575-616
[6]   FERMIONIC SUM REPRESENTATIONS FOR CONFORMAL FIELD-THEORY CHARACTERS [J].
KEDEM, R ;
KLASSEN, TR ;
MCCOY, BM ;
MELZER, E .
PHYSICS LETTERS B, 1993, 307 (1-2) :68-76
[7]  
Kirillov A.N., 1986, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), V155, P194, DOI [10.1007/BF01247088, DOI 10.1007/BF01247088]
[8]   A bijection between Littlewood-Richardson tableaux and rigged configurations [J].
Kirillov A.N. ;
Schilling A. ;
Shimozono M. .
Selecta Mathematica, 2002, 8 (1) :67-135
[9]  
LASCOUX A, 1978, CR ACAD SCI A MATH, V286, P323
[10]   Inhomogeneous lattice paths, generalized Kostka polynomials and An-1 supernomials [J].
Schilling, A ;
Warnaar, SO .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 202 (02) :359-401