The post-replication repair RAD18 and RAD6 genes are involved in the prevention of spontaneous mutations caused by 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae

被引:46
作者
de Padula, M [1 ]
Slezak, G [1 ]
van Der Kemp, PA [1 ]
Boiteux, S [1 ]
机构
[1] CEA, Dept Radiobiol & Radiopathol, CNRS, Radiobiol Mol & Cellulaire UMR217,BP6, F-92265 Fontenay Aux Roses, France
关键词
D O I
10.1093/nar/gkh831
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
7,8-Dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic lesion produced in DNA exposed to free radicals and reactive oxygen species. In Saccharomyces cerevisiae, the OGG1 gene encodes the 8-oxoG DNA N-glycosylase/AP lyase (Ogg1), which is the functional homologue of the bacterial Fpg. Ogg1-deficient strains are spontaneous mutators that accumulate GC to TA transversions due to unrepaired 8-oxoG in DNA. In yeast, DNA mismatch repair (MMR) and translesion synthesis (TLS) by DNA polymerase eta also play a role in the prevention of the mutagenic effect of 8-oxoG. In the present study, we show the RAD18 and RAD6 genes that are required to initiate post-replication repair (PRR) are also involved in the prevention of mutations by 8-oxoG. Consistently, a synergistic increase in spontaneous Can(R) and Lys(+) mutation rates is observed in the absence of Rad6 or Rad18 proteins in ogg1 mutant strains. Spectra of Can(R) mutations in ogg1 rad18 and ogg1 rad6 double mutants show a strong bias in the favor of GC to TA transversions, which are 137- and 189-fold higher than in the wild-type, respectively. The results also show that Poleta (RAD30 gene product) plays a critical role on the prevention of mutations at 8-oxoG, whereas Polzeta (REV3 gene product) does not. Our current model suggests that the Rad6-Rad18 complex targets Poleta at DNA gaps that result from the MMR-mediated excision of adenine mispaired with 8-oxoG, allowing error-free dCMP incorporation opposite to this lesion.
引用
收藏
页码:5003 / 5010
页数:8
相关论文
共 59 条
[1]   Efficiency, specificity and DNA polymerase-dependence of translesion replication across the oxidative DNA lesion 8-oxoguanine in human cells [J].
Avkin, S ;
Livneh, Z .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2002, 510 (1-2) :81-90
[2]   Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein [J].
Bailly, V ;
Prakash, S ;
Prakash, L .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4536-4543
[3]   Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities [J].
Bailly, V ;
Lauder, S ;
Prakash, S ;
Prakash, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (37) :23360-23365
[4]   Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model [J].
Barbour, L ;
Xiao, W .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2003, 532 (1-2) :137-155
[5]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[6]   The human OGG1 gene:: Structure, functions, and its implication in the process of carcinogenesis [J].
Boiteux, S ;
Radicella, JP .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 377 (01) :1-8
[7]   Abasic sites in DNA:: repair and biological consequences in Saccharomyces cerevisiae [J].
Boiteux, S ;
Guillet, M .
DNA REPAIR, 2004, 3 (01) :1-12
[8]   Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress [J].
Boiteux, S ;
Radicella, JP .
BIOCHIMIE, 1999, 81 (1-2) :59-67
[9]   Repair of 8-oxoguanine in Saccharomyces cerevisiae:: Interplay of DNA repair and replication mechanisms [J].
Boiteux, S ;
Gellon, L ;
Guibourt, N .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (12) :1244-1253
[10]   Transcriptional mutagenesis induced by uracil and 8-oxoguanine in Escherichia coli [J].
Brégeon, D ;
Doddridge, ZA ;
You, HJ ;
Weiss, B ;
Doetsch, PW .
MOLECULAR CELL, 2003, 12 (04) :959-970