Analytically solvable model of a driven system with quenched dichotomous disorder

被引:7
作者
Denisov, S. I.
Kostur, M.
Denisova, E. S.
Haenggi, P.
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[2] Sumy State Univ, UA-40007 Sumy, Ukraine
[3] Natl Univ Singapore, Dept Phys, Singapore 227542, Singapore
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 06期
关键词
D O I
10.1103/PhysRevE.75.061123
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a time-dependent study of the driven dynamics of overdamped particles that are placed in a one-dimensional, piecewise linear random potential. This setup of spatially quenched disorder then exerts a dichotomous varying random force on the particles. We derive the path integral representation of the resulting probability density function for the position of the particles and transform this quantity of interest into the form of a Fourier integral. In doing so, the evolution of the probability density can be investigated analytically for finite times. It is demonstrated that the probability density contains both a delta-singular contribution and a regular part. While the former part plays a dominant role at short times, the latter rules the behavior at large evolution times. The slow approach of the probability density to a limiting Gaussian form as time tends to infinity is elucidated in detail.
引用
收藏
页数:7
相关论文
共 26 条
[11]   Brownian motors [J].
Hänggi, P ;
Marchesoni, F ;
Nori, F .
ANNALEN DER PHYSIK, 2005, 14 (1-3) :51-70
[12]   STOCHASTIC-PROCESSES - TIME EVOLUTION, SYMMETRIES AND LINEAR RESPONSE [J].
HANGGI, P ;
THOMAS, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 88 (04) :207-319
[13]  
HANGGI P, 1990, REV MOD PHYS, V62, P251, DOI 10.1103/RevModPhys.62.251
[14]   Drift, creep and pinning of a particle in a correlated random potential [J].
Horner, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 100 (02) :243-257
[15]   Nonlinear field dependence of the mobility of a charge subjected to a superposition of dichotomous stochastic potentials [J].
Kenkre, VM ;
Kus, M ;
Dunlap, DH ;
Parris, PE .
PHYSICAL REVIEW E, 1998, 58 (01) :99-106
[16]   CREEP IN ONE-DIMENSION AND PHENOMENOLOGICAL THEORY OF GLASS DYNAMICS [J].
LEDOUSSAL, P ;
VINOKUR, VM .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1995, 254 (1-2) :63-68
[17]   Instanton approach to the langevin motion of a particle in a random potential [J].
Lopatin, AV ;
Vinokur, VM .
PHYSICAL REVIEW LETTERS, 2001, 86 (09) :1817-1820
[18]   Transport properties in disordered ratchet potentials [J].
Marchesoni, F .
PHYSICAL REVIEW E, 1997, 56 (03) :2492-2495
[19]   Random walks and polymers in the presence of quenched disorder [J].
Monthus, Cecile .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 78 (03) :207-233
[20]   Nonlinear response theory: Transport coefficients for driving fields of arbitrary magnitude [J].
Parris, PE ;
Kus, M ;
Dunlap, DH ;
Kenkre, VM .
PHYSICAL REVIEW E, 1997, 56 (05) :5295-5305