Some properties of eigenvalues and eigenfunctions of the cubic oscillator with imaginary coupling constant

被引:87
作者
Mezincescu, GA
机构
[1] INFM, R-76900 Bucharest, Ilfov, Romania
[2] Acad Romane, Cent Cercetari Avansate Fiz, Bucharest, Romania
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 27期
关键词
D O I
10.1088/0305-4470/33/27/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Comparison between the exact value of the spectral zeta function, Z(H) (1) = 5(-6/5)[3 - 2cos(pi/5)]Gamma(2)(1/5)/ Gamma(3/5), and the results of numeric and WKB calculations supports the conjecture by Daniel Bessis (1995 private communication) that all the eigenvalues of this PT-invariant Hamiltonian are real. For one-dimensional Schrodinger operators with complex potentials having a monotonic imaginary part, the eigenfunctions (and the imaginary parts of their logarithmic derivatives) have no real zeros.
引用
收藏
页码:4911 / 4916
页数:6
相关论文
共 15 条
[1]  
Akhiezer NI, 1993, THEORY LINEAR OPERAT
[2]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[3]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[4]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277
[5]  
BESSIS D, 1995, COMMUNICATION
[6]   Distributional Borel summability of odd anharmonic oscillators [J].
Caliceti, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (20) :3753-3770
[7]   PERTURBATION-THEORY OF ODD ANHARMONIC-OSCILLATORS [J].
CALICETI, E ;
GRAFFI, S ;
MAIOLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (01) :51-66
[8]   Eigenvalues of complex Hamiltonians with PT-symmetry. I [J].
Delabaere, E ;
Pham, F .
PHYSICS LETTERS A, 1998, 250 (1-3) :25-28
[9]  
DELABAERE E, 2000, UNPUB J PHYS A
[10]  
Gradshtein I. S., 1965, TABLES INTEGRALS SER