Distributional Borel summability of odd anharmonic oscillators

被引:28
作者
Caliceti, E [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 20期
关键词
D O I
10.1088/0305-4470/33/20/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proved that the divergent Rayleigh-Schrodinger perturbation expansions for the eigenvalues of any odd anharmonic oscillator are Borel summable in the distributional sense to the resonances naturally associated with the system.
引用
收藏
页码:3753 / 3770
页数:18
相关论文
共 24 条
[1]   COUPLING-CONSTANT BEHAVIOR OF THE RESONANCES OF THE CUBIC ANHARMONIC-OSCILLATOR [J].
ALVAREZ, G .
PHYSICAL REVIEW A, 1988, 37 (11) :4079-4083
[2]   BENDER-WU BRANCH-POINTS IN THE CUBIC OSCILLATOR [J].
ALVAREZ, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (16) :4589-4598
[3]  
[Anonymous], 1978, METHODS MODERN MATH
[4]  
[Anonymous], 1960, The Mechanics of the Atom
[5]   Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :4616-4621
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]  
BENDER CM, 1998, QUANTPH9812039
[8]   Applying the linear δ expansion to the iφ3 interaction [J].
Blencowe, MP ;
Jones, HF ;
Korte, AP .
PHYSICAL REVIEW D, 1998, 57 (08) :5092-5099
[9]   PERTURBATION-THEORY OF ODD ANHARMONIC-OSCILLATORS [J].
CALICETI, E ;
GRAFFI, S ;
MAIOLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (01) :51-66
[10]   STARK RESONANCES - ASYMPTOTICS AND DISTRIBUTIONAL BOREL SUM [J].
CALICETI, E ;
GRECCHI, V ;
MAIOLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :347-357