A nonequilibrium, atmospheric-pressure argon plasma torch for deposition of thin silicon dioxide films

被引:34
作者
Kasih, Tota Pirdo [1 ]
Kuroda, Shin-ichi [1 ]
Kubota, Hitoshi [1 ]
机构
[1] Gunma Univ, Fac Engn, Dept Chem, Kiryu, Gunma 3768515, Japan
关键词
argon plasma torch; nonequilibrium atmospheric pressure plasma; OES; SiO2; film;
D O I
10.1002/cvde.200606535
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A nonequilibrium, atmospheric-pressure plasma torch that can be generated either in He or Ar gas by using a pulsed high-voltage power supply with the discharge temperature in the range 22-35 degrees C has been developed. This system is used to deposit silicon dioxide films from a hexamethyldisiloxane (HMDSO) precursor diluted in an oxygen carrier gas. It is concluded that, in terms of both quality and deposition rate at the same applied power, frequency, and gas composition, Ar plasma is more powerful than He plasma for depositing SiO2-like films. The maximum feed rate of HMDSO/O-2 injected into the Ar plasma torch is limited to 100 mL min(-1) to ensure inorganic coatings are deposited. In order to improve the visual quality, without adversely affecting the inorganic features of the film, a small amount of nitrogen (N-2) can be added to the Ar as a working gas. When the ratio of Ar to N-2 in the flow gas is 30:1, the discharge behavior is transformed from filamentary to glowlike as a result of the quenching effect of admixed N-2 on Ar plasma.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 22 条
[1]   Remote AP-PECVD of silicon dioxide films from hexamethyldisiloxane (HMDSO) [J].
Alexandrov, SE ;
McSporran, N ;
Hitchman, ML .
CHEMICAL VAPOR DEPOSITION, 2005, 11 (11-12) :481-490
[2]   Deposition of silicon dioxide films with an atmospheric-pressure plasma jet [J].
Babayan, SE ;
Jeong, JY ;
Tu, VJ ;
Park, J ;
Selwyn, GS ;
Hicks, RF .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 1998, 7 (03) :286-288
[3]   Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet [J].
Babayan, SE ;
Jeong, JY ;
Schütze, A ;
Tu, VJ ;
Moravej, M ;
Selwyn, GS ;
Hicks, RF .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2001, 10 (04) :573-578
[4]   Characterization of pulsed dc magnetron sputtering plasmas [J].
Belkind, A ;
Freilich, A ;
Lopez, J ;
Zhao, Z ;
Zhu, W ;
Becker, K .
NEW JOURNAL OF PHYSICS, 2005, 7
[5]   Modeling of glow discharge optical emission spectrometry: Calculation of the argon atomic optical emission spectrum [J].
Bogaerts, A ;
Gijbels, R ;
Vlcek, J .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1998, 53 (11) :1517-1526
[6]   Study of an atmospheric pressure glow discharge (APG) for thin film deposition [J].
Foest, R ;
Adler, F ;
Sigeneger, F ;
Schmidt, M .
SURFACE & COATINGS TECHNOLOGY, 2003, 163 :323-330
[7]   Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation [J].
Goossens, O ;
Dekempeneer, E ;
Vangeneugden, D ;
Van de Leest, R ;
Leys, C .
SURFACE & COATINGS TECHNOLOGY, 2001, 142 :474-481
[8]   Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition [J].
Kakiuchi, H ;
Nakahama, Y ;
Ohmi, H ;
Yasutake, K ;
Yoshii, K ;
Mori, Y .
THIN SOLID FILMS, 2005, 479 (1-2) :17-23
[9]  
KASIH TP, IN PRESS PLASMA PROC
[10]   Effects of electrode positioning on the atmospheric-pressure DBD plasma torch [J].
Kuwabara, A ;
Kuroda, S ;
Kubota, H .
PLASMA PROCESSES AND POLYMERS, 2005, 2 (04) :305-309