Conductance modeling for graphene nanoribbon (GNR) interconnects

被引:209
作者
Naeemi, Azad [1 ]
Meindl, James D. [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
conductivity; interconnections; modeling; molecular electronics; quantum wires;
D O I
10.1109/LED.2007.895452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene nanoribbons (GNRs), which are single graphene sheets, share many of the fascinating electronic, mechanical, and thermal properties of carbon nanotubes. Compact physical models for conductance of GNRs as functions of chirality, width, Fermi level, and the type of electron scatterings at the edges are presented. For widths below 8 nm, the models demonstrate that single-layer GNRs can potentially outperform copper wires with unity aspect ratio.
引用
收藏
页码:428 / 431
页数:4
相关论文
共 15 条
[1]  
BEENEKAKER CW, 1991, QUANTUM TRANSPORT SE, V44
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   How do carbon nanotubes fit into the semiconductor roadmap? [J].
Graham, AP ;
Duesberg, GS ;
Hoenlein, W ;
Kreupl, F ;
Liebau, M ;
Martin, R ;
Rajasekharan, B ;
Pamler, W ;
Seidel, R ;
Steinhoegl, W ;
Unger, E .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (06) :1141-1151
[5]   Single-walled carbon nanotube electronics [J].
McEuen, PL ;
Fuhrer, MS ;
Park, HK .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (01) :78-85
[6]   Monolayer metallic nanotube interconnects: Promising candidates for short local interconnects [J].
Naeemi, A ;
Meindl, JD .
IEEE ELECTRON DEVICE LETTERS, 2005, 26 (08) :544-546
[7]   Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J].
Nakada, K ;
Fujita, M ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 1996, 54 (24) :17954-17961
[8]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[9]   Analysis of graphene nanoribbons as a channel material for field-effect transistors [J].
Obradovic, B ;
Kotlyar, R ;
Heinz, F ;
Matagne, P ;
Rakshit, T ;
Giles, MD ;
Stettler, MA ;
Nikonov, DE .
APPLIED PHYSICS LETTERS, 2006, 88 (14)
[10]   Controlling the electronic structure of bilayer graphene [J].
Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, United States ;
不详 ;
不详 .
Science, 2006, 5789 (951-954) :951-954