Zr-based metal-organic frameworks: design, synthesis, structure, and applications

被引:2093
作者
Bai, Yan [1 ,2 ]
Dou, Yibo [1 ,2 ]
Xie, Lin-Hua [1 ,2 ]
Rutledge, William [3 ]
Li, Jian-Rong [1 ,2 ]
Zhou, Hong-Cai [3 ]
机构
[1] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
[3] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA
关键词
HIGH-SURFACE-AREA; PHOTOCATALYTIC CO2 REDUCTION; SECONDARY BUILDING UNITS; CHEMICAL WARFARE AGENTS; TURN-ON PROBE; COORDINATION POLYMERS; HIGHLY EFFICIENT; CRYSTAL-STRUCTURES; FUNCTIONAL-GROUPS; CATION-EXCHANGE;
D O I
10.1039/c5cs00837a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Among the large family of metal-organic frameworks (MOFs), Zr-based MOFs, which exhibit rich structure types, outstanding stability, intriguing properties and functions, are foreseen as one of the most promising MOF materials for practical applications. Although this specific type of MOF is still in its early stage of development, significant progress has been made in recent years. Herein, advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications. Four synthesis strategies implemented in building and/or modifying Zr-MOFs as well as their scale-up preparation under green and industrially feasible conditions are illustrated first. Zr-MOFs with various structural types are then classified and discussed in terms of different Zr-based secondary building units and organic ligands. Finally, applications of Zr-MOFs in catalysis, molecule adsorption and separation, drug delivery, and fluorescence sensing, and as porous carriers are highlighted. Such a review based on a specific type of MOF is expected to provide guidance for the in-depth investigation of MOFs towards practical applications.
引用
收藏
页码:2327 / 2367
页数:41
相关论文
共 301 条
[1]   Topotactic Transformations of Metal Organic Frameworks to Highly Porous and Stable Inorganic Sorbents for Efficient Radionuclide Sequestration [J].
Abney, Carter W. ;
Taylor-Pashow, Kathryn M. L. ;
Russell, Shane R. ;
Chen, Yuan ;
Samantaray, Raghabendra ;
Lockard, Jenny V. ;
Lin, Wenbin .
CHEMISTRY OF MATERIALS, 2014, 26 (18) :5231-5243
[2]   Zeolite-like metal-organic frameworks as platforms for applications:: On metalloporphyrin-based catalysts [J].
Alkordi, Mohamed H. ;
Liu, Yunling ;
Larsen, Randy W. ;
Eubank, Jarrod F. ;
Eddaoudi, Mohamed .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) :12639-+
[3]   Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide [J].
Allan, Phoebe K. ;
Wheatley, Paul S. ;
Aldous, David ;
Mohideen, M. Infas ;
Tang, Chiu ;
Hriljac, Joseph A. ;
Megson, Ian L. ;
Chapman, Karena W. ;
De Weireld, Guy ;
Vaesen, Sebastian ;
Morris, Russell E. .
DALTON TRANSACTIONS, 2012, 41 (14) :4060-4066
[4]   Luminescent metal-organic frameworks [J].
Allendorf, M. D. ;
Bauer, C. A. ;
Bhakta, R. K. ;
Houk, R. J. T. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1330-1352
[5]   Ionic Conductivity in the Metal-Organic Framework UiO-66 by Dehydration and Insertion of Lithium tert-Butoxide [J].
Ameloot, Rob ;
Aubrey, Michael ;
Wiers, Brian M. ;
Gomora-Figueroa, Ana P. ;
Patel, Shrayesh N. ;
Balsara, Nitash P. ;
Long, Jeffrey R. .
CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (18) :5533-5536
[6]   Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework [J].
An, Jihyun ;
Geib, Steven J. ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (24) :8376-+
[7]   Symbiosis of zeolite-like metal-organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release [J].
Ananthoji, Ramakanth ;
Eubank, Jarrod F. ;
Nouar, Farid ;
Mouttaki, Hasnaa ;
Eddaoudi, Mohamed ;
Harmon, Julie P. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (26) :9587-9594
[8]   Evaluation of the BET Method for Determining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores [J].
Bae, Youn-Sang ;
Yazaydin, A. Oezguer ;
Snurr, Randall Q. .
LANGMUIR, 2010, 26 (08) :5475-5483
[9]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[10]   Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties [J].
Banerjee, Rahul ;
Furukawa, Hiroyasu ;
Britt, David ;
Knobler, Carolyn ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3875-+