Particle Markov chain Monte Carlo methods

被引:1240
作者
Andrieu, Christophe [2 ]
Doucet, Arnaud [1 ,3 ]
Holenstein, Roman
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
[2] Univ Bristol, Bristol BS8 1TH, Avon, England
[3] Inst Stat Math, Tokyo, Japan
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Bayesian inference; Markov chain Monte Carlo methods; Sequential Monte Carlo methods; State space models; BAYESIAN-INFERENCE; NONLINEAR FILTERS; ONLINE INFERENCE; STATE ESTIMATION; MODELS; TIME; SIMULATION; LIKELIHOOD; STABILITY; APPROXIMATION;
D O I
10.1111/j.1467-9868.2009.00736.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions. Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is unreliable when the proposal distributions that are used to explore the space are poorly chosen and/or if highly correlated variables are updated independently. We show here how it is possible to build efficient high dimensional proposal distributions by using sequential Monte Carlo methods. This allows us not only to improve over standard Markov chain Monte Carlo schemes but also to make Bayesian inference feasible for a large class of statistical models where this was not previously so. We demonstrate these algorithms on a non-linear state space model and a Levy-driven stochastic volatility model.
引用
收藏
页码:269 / 342
页数:74
相关论文
共 89 条
[31]   Maximum a posteriori sequence estimation using Monte Carlo particle filters [J].
Godsill, S ;
Doucet, A ;
West, M .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (01) :82-96
[32]   Monte Carlo smoothing for nonlinear time series [J].
Godsill, SJ ;
Doucet, A ;
West, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) :156-168
[33]   Bayesian inference for nonlinear multivariate diffusion models observed with error [J].
Golightly, A. ;
Wilkinson, D. J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) :1674-1693
[34]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[35]   Inference for nonlinear dynamical systems [J].
Ionides, E. L. ;
Breto, C. ;
King, A. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (49) :18438-18443
[36]   On population-based simulation for static inference [J].
Jasra, Ajay ;
Stephens, David A. ;
Holmes, Christopher C. .
STATISTICS AND COMPUTING, 2007, 17 (03) :263-279
[37]  
Kendall BE, 1999, ECOLOGY, V80, P1789, DOI 10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO
[38]  
2
[39]   Equation-free: The computer-aided analysis of comptex multiscale systems [J].
Kevrekidis, IG ;
Gear, CW ;
Hummer, G .
AICHE JOURNAL, 2004, 50 (07) :1346-1355
[40]  
King A. A., 2008, POMP STAT INFERENCE