Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles

被引:1365
作者
Levy, N. [1 ,2 ]
Burke, S. A. [1 ]
Meaker, K. L. [1 ]
Panlasigui, M. [1 ]
Zettl, A. [1 ,2 ]
Guinea, F. [3 ]
Castro Neto, A. H. [4 ]
Crommie, M. F. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SCANNING TUNNELING SPECTROSCOPY; DIRAC-FERMIONS; MEMBRANES; PT(111);
D O I
10.1126/science.1191700
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent theoretical proposals suggest that strain can be used to engineer graphene electronic states through the creation of a pseudo-magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry (C-3v). Here, we present experimental spectroscopic measurements by scanning tunneling microscopy of highly strained nanobubbles that form when graphene is grown on a platinum (111) surface. The nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo-magnetic fields greater than 300 tesla. This demonstration of enormous pseudo-magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called "strain engineering."
引用
收藏
页码:544 / 547
页数:4
相关论文
共 29 条
[1]   Edge-dependent selection rules in magic triangular graphene flakes [J].
Akola, J. ;
Heiskanen, H. P. ;
Manninen, M. .
PHYSICAL REVIEW B, 2008, 77 (19)
[2]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
[3]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[4]   Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC [J].
Brar, Victor W. ;
Zhang, Yuanbo ;
Yayon, Yossi ;
Ohta, Taisuke ;
McChesney, Jessica L. ;
Bostwick, Aaron ;
Rotenberg, Eli ;
Horn, Karsten ;
Crommie, Michael F. .
APPLIED PHYSICS LETTERS, 2007, 91 (12)
[5]   Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy [J].
Brar, Victor W. ;
Wickenburg, Sebastian ;
Panlasigui, Melissa ;
Park, Cheol-Hwan ;
Wehling, Tim O. ;
Zhang, Yuanbo ;
Decker, Regis ;
Girit, Caglar ;
Balatsky, Alexander V. ;
Louie, Steven G. ;
Zettl, Alex ;
Crommie, Michael F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[6]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195
[9]   Integration of point-contact microscopy and atomic-force microscopy: Application to characterization of graphite/Pt(111) [J].
Enachescu, M ;
Schleef, D ;
Ogletree, DF ;
Salmeron, M .
PHYSICAL REVIEW B, 1999, 60 (24) :16913-16919
[10]   Tunable interfacial properties of epitaxial graphene on metal substrates [J].
Gao, Min ;
Pan, Yi ;
Zhang, Chendong ;
Hu, Hao ;
Yang, Rong ;
Lu, Hongliang ;
Cai, Jinming ;
Du, Shixuan ;
Liu, Feng ;
Gao, H. -J. .
APPLIED PHYSICS LETTERS, 2010, 96 (05)