A center manifold analysis for the Mullins-Sekerka model

被引:100
作者
Escher, J [1 ]
Simonett, G
机构
[1] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Mullins-Sekerka model; mean curvature; free boundary problem; generalized motion by mean curvature; center manifold;
D O I
10.1006/jdeq.1997.3373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. We show that classical solutions exist globally and tend to spheres exponentially fast, provided that they are close to a sphere initially. Our analysis is based on center manifold theory and on maximal regularity. (C) 1998 Academic Press.
引用
收藏
页码:267 / 292
页数:26
相关论文
共 38 条
[31]  
MAYER UF, UNPUB 2 SIDED MULLIN
[32]   MORPHOLOGICAL STABILITY OF A PARTICLE GROWING BY DIFFUSION OR HEAT FLOW [J].
MULLINS, WW ;
SEKERKA, RF .
JOURNAL OF APPLIED PHYSICS, 1963, 34 (02) :323-&
[33]   The second periodic eigenvalue and the Alikakos-Fusco conjecture [J].
Papanicolaou, VG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 130 (02) :321-332
[34]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]
[36]  
Simonett G., 1995, Differ Integr Equ, V8, P753
[37]   INVARIANT-MANIFOLDS AND BIFURCATION FOR QUASI-LINEAR REACTION-DIFFUSION SYSTEMS [J].
SIMONETTI, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (04) :515-544
[38]  
TRIEBEL H, 1980, HOHERE ANAL