A center manifold analysis for the Mullins-Sekerka model

被引:100
作者
Escher, J [1 ]
Simonett, G
机构
[1] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Mullins-Sekerka model; mean curvature; free boundary problem; generalized motion by mean curvature; center manifold;
D O I
10.1006/jdeq.1997.3373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. We show that classical solutions exist globally and tend to spheres exponentially fast, provided that they are close to a sphere initially. Our analysis is based on center manifold theory and on maximal regularity. (C) 1998 Academic Press.
引用
收藏
页码:267 / 292
页数:26
相关论文
共 38 条
[21]  
Escher J., 1997, ADV DIFFERENTIAL EQU, V2, P619
[22]  
Escher J, 1996, MATH RES LETT, V3, P467
[23]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[24]  
Gurtin M.E., 1993, Thermomechanics of evolving phase boundaries in the plane Clarendon Press
[25]  
Oxford University Press
[26]   CLASSICAL-SOLUTIONS OF THE STEFAN PROBLEM [J].
HANZAWA, EI .
TOHOKU MATHEMATICAL JOURNAL, 1981, 33 (03) :297-335
[27]   On the second eigenvalue of the Laplace operator penalized by curvature [J].
Harrell, EM .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1996, 6 (04) :397-400
[28]  
HUISKEN G, 1984, J DIFFER GEOM, V20, P237
[29]  
Lunardi A., 1995, ANAL SEMIGROUPS OPTI
[30]  
MAYER UF, 1993, ELECT J DIFFERENTIAL, P1