Hydrophobic helical hairpins: Design and packing interactions in membrane environment

被引:34
作者
Johnson, RM
Heslop, CL
Deber, CM
机构
[1] Hosp Sick Children, Res Inst, Div Struct Biol & Biochem, Toronto, ON M5G 1X8, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1021/bi0492760
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Helix-helix interactions within membranes are dominated by van der Waals packing motifs and side chain-side chain hydrogen bond formation, which act in tandem to determine the residues that comprise the interface between two given helices. To explore in a systematic manner the tertiary contacts between transmembrane helices, we have designed and expressed in Escherichia coli highly hydrophobic helix-loop-helix constructs of prototypic sequence K(1)KKKKKKFALUAIIAWAX(19)AIIAIAIAIKSPGSKIAIAIAIIAZ(44)AWAIIAIAIAFKKKKKKK(62), where "small" (Ala) and "large" (Ile) residues were used to maximize the tertiary contact area. Evidence that the two transmembrane (TM) segments in the AI construct contain an interface conducive for folding into a hairpin structure was obtained from the results that (i) the single TM Alp,p peptide derived from the AI hairpin forms SDS-resistant dimers on PAGE gels and (ii) the corresponding sequence forms a strong dimer when examined in vivo in TOXCAT assays. Sitedirected mutagenesis of AI hairpins was carried out to incorporate each of the 20 commonly occurring amino acids at X positions. Analysis on Western blots using an oligomerization assay in 12% NuPage-sodium dodecyl sulfate (SDS) indicated that mutants with X = E, D, Q, R, N, H, and K largely formed SDS-resistant dimers-which likely correspond to H-bonded four-helix bundles-while all the others (e.g., X = F, W, L, I, M, V, C, Y, A, T, S, G, and P) remained monomeric. Systematic studies of X/Z double mutants indicated that formation of hairpin dimers is the result of the disruption of stabilizing interactions between the antiparallel helices within the Al construct. The overall results suggest that, in situations where hydrophobic van der Waals packing energy between helices is sufficient to prevent significant rotation about the major axes of interacting helices, intrahairpin side chain-side chain H-bond formation will occur mainly when pairs of polar residues are interfacially located and proximal. Knowledge of the relative contributions of these forces should be of value, for example, in clarifying the context-and the structural consequences-of disease-related mutations.
引用
收藏
页码:14361 / 14369
页数:9
相关论文
共 52 条
[1]   GLYCOPHORIN-A HELICAL TRANSMEMBRANE DOMAINS DIMERIZE IN PHOSPHOLIPID-BILAYERS - A RESONANCE ENERGY-TRANSFER STUDY [J].
ADAIR, BD ;
ENGELMAN, DM .
BIOCHEMISTRY, 1994, 33 (18) :5539-5544
[2]   COMPUTATIONAL SEARCHING AND MUTAGENESIS SUGGEST A STRUCTURE FOR THE PENTAMERIC TRANSMEMBRANE DOMAIN OF PHOSPHOLAMBAN [J].
ADAMS, PD ;
ARKIN, IT ;
ENGELMAN, DM ;
BRUNGER, AT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (02) :154-162
[3]   Structure of the transmembrane cysteine residues in phospholamban [J].
Arkin, IT ;
Adams, PD ;
Brunger, AT ;
Aimoto, S ;
Engelman, DM ;
Smith, SO .
JOURNAL OF MEMBRANE BIOLOGY, 1997, 155 (03) :199-206
[4]   Cation-π interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors:: The anomalous binding properties of nicotine [J].
Beene, DL ;
Brandt, GS ;
Zhong, WG ;
Zacharias, NM ;
Lester, HA ;
Dougherty, DA .
BIOCHEMISTRY, 2002, 41 (32) :10262-10269
[5]   Helix packing in membrane proteins [J].
Bowie, JU .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (05) :780-789
[6]   AROMATIC-AROMATIC INTERACTION - A MECHANISM OF PROTEIN-STRUCTURE STABILIZATION [J].
BURLEY, SK ;
PETSKO, GA .
SCIENCE, 1985, 229 (4708) :23-28
[7]   Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: Evaluation of reversible unfolding conditions [J].
Chen, GQ ;
Gouaux, E .
BIOCHEMISTRY, 1999, 38 (46) :15380-15387
[8]  
Choma C, 2000, NAT STRUCT BIOL, V7, P161
[9]   Motifs of serine and threonine can drive association of transmembrane helices [J].
Dawson, JP ;
Weinger, JS ;
Engelman, DM .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 316 (03) :799-805
[10]   TM Finder: A prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales [J].
Deber, CM ;
Wang, C ;
Liu, LP ;
Prior, AS ;
Agrawal, S ;
Muskat, BL ;
Cuticchia, AJ .
PROTEIN SCIENCE, 2001, 10 (01) :212-219