An iterative identification procedure for dynamic modeling of biochemical networks

被引:132
作者
Balsa-Canto, Eva [1 ]
Alonso, Antonio A. [1 ]
Banga, Julio R. [1 ]
机构
[1] IIM CSIC, Bioproc Engn Grp, Spanish Natl Res Council, Vigo 36208, Spain
基金
美国国家科学基金会;
关键词
NF-KAPPA-B; STRUCTURAL IDENTIFIABILITY; PARAMETER-ESTIMATION; SYSTEMS BIOLOGY; GLOBAL IDENTIFIABILITY; SIMULATION; PATHWAYS;
D O I
10.1186/1752-0509-4-11
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Mathematical models provide abstract representations of the information gained from experimental observations on the structure and function of a particular biological system. Conferring a predictive character on a given mathematical formulation often relies on determining a number of non-measurable parameters that largely condition the model's response. These parameters can be identified by fitting the model to experimental data. However, this fit can only be accomplished when identifiability can be guaranteed. Results: We propose a novel iterative identification procedure for detecting and dealing with the lack of identifiability. The procedure involves the following steps: 1) performing a structural identifiability analysis to detect identifiable parameters; 2) globally ranking the parameters to assist in the selection of the most relevant parameters; 3) calibrating the model using global optimization methods; 4) conducting a practical identifiability analysis consisting of two (a priori and a posteriori) phases aimed at evaluating the quality of given experimental designs and of the parameter estimates, respectively and 5) optimal experimental design so as to compute the scheme of experiments that maximizes the quality and quantity of information for fitting the model. Conclusions: The presented procedure was used to iteratively identify a mathematical model that describes the NF-kappa B regulatory module involving several unknown parameters. We demonstrated the lack of identifiability of the model under typical experimental conditions and computed optimal dynamic experiments that largely improved identifiability properties.
引用
收藏
页数:18
相关论文
共 51 条
[1]  
ACHARD P, 2006, PLOS COMPUTATIONAL B, V2
[2]  
AGPAR J, 2008, PLOS COMPUTATIONAL B, V4, pE30
[3]   Physicochemical modelling of cell signalling pathways [J].
Aldridge, Bree B. ;
Burke, John M. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
NATURE CELL BIOLOGY, 2006, 8 (11) :1195-1203
[4]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[5]   Computational procedures for optimal experimental design in biological systems [J].
Balsa-Canto, E. ;
Alonso, A. A. ;
Banga, J. R. .
IET SYSTEMS BIOLOGY, 2008, 2 (04) :163-172
[6]  
BALSACANTO E, 2006, UNDERSTANDING EXPLOI, P103
[7]   Parameter estimation and optimal experimental design [J].
Banga, Julio R. ;
Balsa-Canto, Eva .
ESSAYS IN BIOCHEMISTRY: SYSTEMS BIOLOGY, VOL 45, 2008, 45 :195-209
[8]   DAISY:: A new software tool to test global identifiability of biological and physiological systems [J].
Bellu, Giuseppina ;
Saccomani, Maria Pia ;
Audoly, Stefania ;
D'Angio, Leontina .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 88 (01) :52-61
[9]   The statistical mechanics of complex signaling networks: nerve growth factor signaling [J].
Brown, KS ;
Hill, CC ;
Calero, GA ;
Myers, CR ;
Lee, KH ;
Sethna, JP ;
Cerione, RA .
PHYSICAL BIOLOGY, 2004, 1 (03) :184-195
[10]   Practical identifiability analysis of large environmental simulation models [J].
Brun, R ;
Reichert, P ;
Künsch, HR .
WATER RESOURCES RESEARCH, 2001, 37 (04) :1015-1030