An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon

被引:65
作者
Ruffell, S. [1 ]
Bradby, J. E.
Williams, J. S.
Warren, O. L.
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Elect Mat Engn, Canberra, ACT 0200, Australia
[2] Hysitron Inc, Minneapolis, MN 55344 USA
关键词
D O I
10.1557/JMR.2007.0100
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An in situ electrical measurement technique for the investigation of nanoindentation using a Hysitron Triboindenter is described, together with details of experiments to address some technical issues associated with the technique. Pressure-induced phase transformations in silicon during indentation are of particular interest but are not fully understood. The current in situ electrical characterization method makes use of differences in electrical properties of the phase-transformed silicon to better understand the sequence of transformations that occur during loading and unloading. Here, electric current is measured through the sample/indenter tip during indentation, with a fixed or variable voltage applied to the sample. This method allows both current monitoring during indentation and the extraction of current-voltage (I-V) characteristics at various stages of loading. The work presented here focuses on experimental issues that must be understood for a full interpretation of results from nanoindentation experiments in silicon. The tip/sample contact and subsurface electrical resistivity changes dominate the resultant current measurement. Extracting the component of contact resistance provides an extremely sensitive method for measuring the electrical properties of the material immediately below the indenter tip, with initial results from indentation in silicon showing that this is a very sensitive probe of subsurface structural and electrical changes.
引用
收藏
页码:578 / 586
页数:9
相关论文
共 34 条
[1]  
BHUSHAN B, 1997, J MATER RES, V12, P59
[2]   Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon [J].
Bradby, JE ;
Williams, JS ;
Wong-Leung, J ;
Swain, MV ;
Munroe, P .
APPLIED PHYSICS LETTERS, 2000, 77 (23) :3749-3751
[3]   In situ electrical characterization of phase transformations in Si during indentation -: art. no. 085205 [J].
Bradby, JE ;
Williams, JS ;
Swain, MV .
PHYSICAL REVIEW B, 2003, 67 (08)
[4]   Mechanical deformation in silicon by micro-indentation [J].
Bradby, JE ;
Williams, JS ;
Wong-Leung, J ;
Swain, MV ;
Munroe, P .
JOURNAL OF MATERIALS RESEARCH, 2001, 16 (05) :1500-1507
[5]   Ohmic contacts on p-type homoepitaxial diamond and their thermal stability [J].
Chen, YG ;
Ogura, M ;
Yamasaki, S ;
Okushi, H .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (08) :860-863
[6]   AMORPHIZATION AND CONDUCTIVITY OF SILICON AND GERMANIUM INDUCED BY INDENTATION [J].
CLARKE, DR ;
KROLL, MC ;
KIRCHNER, PD ;
COOK, RF ;
HOCKEY, BJ .
PHYSICAL REVIEW LETTERS, 1988, 60 (21) :2156-2159
[7]  
COLLINS AT, 1994, PROPERTIES GROWTH DI, P273
[8]   REVERSIBLE PRESSURE-INDUCED STRUCTURAL TRANSITIONS BETWEEN METASTABLE PHASES OF SILICON [J].
CRAIN, J ;
ACKLAND, GJ ;
MACLEAN, JR ;
PILTZ, RO ;
HATTON, PD ;
PAWLEY, GS .
PHYSICAL REVIEW B, 1994, 50 (17) :13043-13046
[9]   Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon [J].
Domnich, V ;
Gogotsi, Y ;
Dub, S .
APPLIED PHYSICS LETTERS, 2000, 76 (16) :2214-2216
[10]  
Fischer-Cripps A.C., 2004, NANOINDENTATION