On translational motion planning of a convex polyhedron in 3-space

被引:34
作者
Aronov, B
Sharir, M
机构
[1] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
combinatorial geometry; computational geometry; combinatorial complexity; convex polyhedra; geometric algorithms; randomized algorithms; algorithmic motion planning;
D O I
10.1137/S0097539794266602
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let B be a convex polyhedron translating in 3-space amidst k convex polyhedral obstacles A(1),...,A(k) with pairwise disjoint interiors. The free configuration space (space of all collision-free placements) of B can be represented as the complement of the union of the Minkowski sums P-i = A(i) + (-B), for i = 1,...,k. We show that the combinatorial complexity of the free configuration space of B is O(nk log k), and that it can be Omega(nk alpha(k)) in the worst case, where n is the total complexity of the individual Minkowski sums P-1,...,P-k. We also derive an efficient randomized algorithm that constructs this configuration space in expected time O(nk log k log n).
引用
收藏
页码:1785 / 1803
页数:19
相关论文
共 32 条
[1]   The union of convex polyhedra in three dimensions [J].
Aronov, B ;
Sharir, M ;
Tagansky, B .
SIAM JOURNAL ON COMPUTING, 1997, 26 (06) :1670-1688
[2]   CASTLES IN THE AIR REVISITED [J].
ARONOV, B ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (02) :119-150
[3]   The common exterior of convex polygons in the plane [J].
Aronov, B ;
Sharir, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (03) :139-149
[4]   TRIANGLES IN SPACE OR BUILDING (AND ANALYZING) CASTLES IN THE AIR [J].
ARONOV, B ;
SHARIR, M .
COMBINATORICA, 1990, 10 (02) :137-173
[5]  
ARONOV B, 1993, AN S FDN CO, P518
[6]  
Boissonnat J.-D., 1995, Proceedings of the Eleventh Annual Symposium on Computational Geometry, P79, DOI 10.1145/220279.220288
[7]   APPLICATIONS OF RANDOM SAMPLING TO ONLINE ALGORITHMS IN COMPUTATIONAL GEOMETRY [J].
BOISSONNAT, JD ;
DEVILLERS, O ;
SCHOTT, R ;
TEILLAUD, M ;
YVINEC, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (01) :51-71
[8]  
BOISSONNAT JD, IN PRESS DISCRETE CO
[9]   AN OPTIMAL ALGORITHM FOR INTERSECTING 3-DIMENSIONAL CONVEX POLYHEDRA [J].
CHAZELLE, B .
SIAM JOURNAL ON COMPUTING, 1992, 21 (04) :671-696
[10]   COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS AND RELATED PROBLEMS [J].
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, L ;
SHARIR, M ;
SNOEYINK, J .
SIAM JOURNAL ON COMPUTING, 1993, 22 (06) :1286-1302