Ion-assisted precursor dissociation and surface diffusion: Enabling rapid, low-temperature growth of carbon nanofibers

被引:83
作者
Denysenko, I.
Ostrikov, K. [1 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[2] Kharkov Natl Univ, Sch Phys & Technol, Kharkov, Ukraine
基金
澳大利亚研究理事会;
关键词
D O I
10.1063/1.2750392
中图分类号
O59 [应用物理学];
学科分类号
摘要
Growth kinetics of carbon nanofibers in a hydrocarbon plasma is studied. In addition to gas-phase and surface processes common to chemical vapor deposition, the model includes (unique to plasma-exposed catalyst surfaces) ion-induced dissociation of hydrocarbons, interaction of adsorbed species with incoming hydrogen atoms, and dissociation of hydrocarbon ions. It is shown that at low, nanodevice-friendly process temperatures the nanofibers grow via surface diffusion of carbon adatoms produced on the catalyst particle via ion-induced dissociation of a hydrocarbon precursor. These results explain a lower activation energy of nanofiber growth in a plasma and can be used for the synthesis of other nanoassemblies. (c) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 28 条
[11]   Uniformity of postprocessing of dense nanotube arrays by neutral and ion fluxes [J].
Levchenko, I. ;
Ostrikov, K. ;
Tam, E. .
APPLIED PHYSICS LETTERS, 2006, 89 (22)
[12]   Density of defect states of aluminum nitride grown on silicon and silicon carbide substrates at room temperature [J].
Ligatchev, V ;
Rusli ;
Pan, Z .
APPLIED PHYSICS LETTERS, 2005, 87 (24) :1-3
[13]   Optical emission spectroscopy study for optimization of carbon nanotubes growth by a triode plasma chemical vapor deposition [J].
Lim, SH ;
Yoon, HS ;
Moon, JH ;
Park, KC ;
Jang, J .
APPLIED PHYSICS LETTERS, 2006, 88 (03) :1-3
[14]   Nanotube self-organization: Formation by step-flow growth [J].
Louchev, OA ;
Sato, Y .
APPLIED PHYSICS LETTERS, 1999, 74 (02) :194-196
[15]   Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition [J].
Louchev, OA ;
Laude, T ;
Sato, Y ;
Kanda, H .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (16) :7622-7634
[16]   Surface carbonization and nucleation during chemical vapor deposition of diamond [J].
Louchev, OA ;
Dussarrat, C ;
Sato, Y .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (03) :1736-1743
[17]   Surface and plasma simulation of deposition processes: CH4 plasmas for the growth of diamondlike carbon [J].
Mantzaris, NV ;
Gogolides, E ;
Boudouvis, AG ;
Rhallabi, A ;
Turban, G .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (07) :3718-3729
[18]   Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly [J].
Melechko, AV ;
Merkulov, VI ;
McKnight, TE ;
Guillorn, MA ;
Klein, KL ;
Lowndes, DH ;
Simpson, ML .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (04)
[19]   Carbon nanotube growth by PECVD: a review [J].
Meyyappan, M ;
Delzeit, L ;
Cassell, A ;
Hash, D .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2003, 12 (02) :205-216
[20]   Predicting the amount of carbon in carbon nanotubes grown by CH4 rf plasmas -: art. no. 014302 [J].
Okita, A ;
Suda, Y ;
Ozeki, A ;
Sugawara, H ;
Sakai, Y ;
Oda, A ;
Nakamura, J .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (01) :1-7