Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations

被引:48
作者
Goldenshluger, A
Pereverzev, SV
机构
[1] Univ Haifa, Dept Stat, IL-31905 Haifa, Israel
[2] Ukrainian Acad Sci, Inst Math, UA-252601 Kiev, Ukraine
关键词
adaptive estimation; discretization; Hilbert scales; inverse problems; linear functionals; regularization; minimax risk;
D O I
10.1007/s440-000-8013-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider adaptive estimating the value of a linear functional from indirect white noise observations. For a flexible approach, the problem is embedded in an abstract Hilbert scale. We develop an adaptive estimator that is rate optimal within a logarithmic factor simultaneously over a wide collection of balls in the Hilbert scale. It is shown that the proposed estimator has the best possible adaptive properties for a wide range of linear functionals. The case of discretized indirect white noise observations is studied, and the adaptive estimator in this setting is developed.
引用
收藏
页码:169 / 186
页数:18
相关论文
共 44 条
[1]   Wavelet decomposition approaches to statistical inverse problems [J].
Abramovich, F ;
Silverman, BW .
BIOMETRIKA, 1998, 85 (01) :115-129
[2]  
[Anonymous], 1967, COMP MATH MATH PHYS+, DOI DOI 10.1016/0041-5553(67)90047-X
[3]  
BAKUSHINSKII AB, 1969, SOV MATH DOKL, V189, P231
[4]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[5]   ESTIMATING LINEAR FUNCTIONALS OF A PET IMAGE [J].
BICKEL, PJ ;
RITOV, Y .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1995, 14 (01) :81-87
[6]  
Brown LD, 1996, ANN STAT, V24, P2524
[7]  
CAVALIER L, 1998, UNPUB SHARP ADAPTATI
[8]   Statistical approach to some ill-posed problems for linear partial differential equations [J].
Chow, PL ;
Ibragimov, IA ;
Khasminskii, RZ .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :421-441
[9]   RENORMALIZATION EXPONENTS AND OPTIMAL POINTWISE RATES OF CONVERGENCE [J].
DONOHO, DL ;
LOW, MG .
ANNALS OF STATISTICS, 1992, 20 (02) :944-970
[10]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455