Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories

被引:55
作者
Barack, L [1 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
关键词
D O I
10.1103/PhysRevD.62.084027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, we proposed a method for calculating the "radiation reaction'' self-force exerted on a charged particle moving in a strong field orbit in a black hole spacetime. In this approach, one first calculates the contribution to the "tail'' part of the self-force due to each multipole mode of the particle's self-field. A certain analytic procedure is then applied to regularize the (otherwise divergent) sum over modes. This involves the derivation of certain regularization parameters using local analysis of the (retarded) Green's function. In the present paper we present a detailed formulation of this mode-sum regularization scheme for a scalar charge on a class of static spherically symmetric backgrounds (including, e.g., the Schwarzschild, Reissner-Nordstrom, and Schwarzschild-de Sitter spacetimes). We fully implement the regularization scheme for an arbitrary radial trajectory (not necessarily geodesic) by explicitly calculating all necessary regularization parameters in this case.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 43 条
[11]   CAN SYNCHROTRON GRAVITATIONAL RADIATION EXIST [J].
DAVIS, M ;
TIOMNO, J ;
RUFFINI, R ;
ZERILLI, F .
PHYSICAL REVIEW LETTERS, 1972, 28 (20) :1352-&
[12]  
DAVIS M, 1971, PHYS REV LETT, V27, P1446
[13]   RADIATION DAMPING IN A GRAVITATIONAL FIELD [J].
DEWITT, BS ;
BREHME, RW .
ANNALS OF PHYSICS, 1960, 9 (02) :220-259
[14]  
DeWitt C M, 1964, PHYSICS, V1, P3
[16]  
Erdelyi A., 1953, Higher Transcendental Functions, California Institute of Technology. Bateman Manuscript Project, V1
[17]  
Frolov V. P., 1982, Sov. Phys. JETP, V55, P191
[18]  
FROLOV VP, 1980, 9 INT C GEN REL GRAV, V3, P555
[19]   RADIATION REACTION IN THE KERR GRAVITATIONAL-FIELD [J].
GALTSOV, DV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12) :3737-3749
[20]   A posteriori error estimation techniques in practical finite element analysis [J].
Grätsch, T ;
Bathe, KJ .
COMPUTERS & STRUCTURES, 2005, 83 (4-5) :235-265