Algebraic-geometrical formulation of two-dimensional quantum gravity

被引:7
作者
Bonelli, G
Marchetti, PA
Matone, M
机构
[1] Department of Physics, 'G. Galilei', Ist. Nazionale di Fisica Nucleare, University of Padova, 35131 Padova
关键词
two-dimensional quantum gravity; Riemann surfaces; Painleve I recursion relations; Weil-Petersson two-forms; Liouville path integral;
D O I
10.1007/BF00714381
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painleve I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 31 条
[1]  
ALVAREZGAUME L, 1990, RANDOM SURFACES STAT
[2]  
[Anonymous], 1978, Principles of algebraic geometry
[3]   THE MUMFORD FORM AND THE POLYAKOV MEASURE IN STRING THEORY [J].
BEILINSON, AA ;
MANIN, YI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (03) :359-376
[4]   ALGEBRAIC-GEOMETRY AND THE GEOMETRY OF QUANTUM STRINGS [J].
BELAVIN, AA ;
KNIZHNIK, VG .
PHYSICS LETTERS B, 1986, 168 (03) :201-206
[5]   NONPERTURBATIVE 2D GRAVITY, PUNCTURED SPHERES AND THETA-VACUA IN STRING THEORIES [J].
BONELLI, G ;
MARCHETTI, PA ;
MATONE, M .
PHYSICS LETTERS B, 1994, 339 (1-2) :49-58
[6]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[7]   CONFORMAL FIELD-THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE [J].
DAVID, F .
MODERN PHYSICS LETTERS A, 1988, 3 (17) :1651-1656
[8]   POLYNOMIAL AVERAGES IN THE KONTSEVICH MODEL [J].
DIFRANCESCO, P ;
ITZYKSON, C ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (01) :193-219
[9]  
DIFRANCESCO P, LAUR931722
[10]  
DIFRANCESCO P, 1993, IN PRESS LOW DIMENSI