Algebraic-geometrical formulation of two-dimensional quantum gravity

被引:7
作者
Bonelli, G
Marchetti, PA
Matone, M
机构
[1] Department of Physics, 'G. Galilei', Ist. Nazionale di Fisica Nucleare, University of Padova, 35131 Padova
关键词
two-dimensional quantum gravity; Riemann surfaces; Painleve I recursion relations; Weil-Petersson two-forms; Liouville path integral;
D O I
10.1007/BF00714381
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painleve I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 31 条
[21]   INTERSECTION THEORY ON THE MODULI SPACE OF CURVES AND THE MATRIX AIRY FUNCTION [J].
KONTSEVICH, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :1-23
[22]   INTERSECTION THEORY ON THE MODULI SPACE OF CURVES [J].
KONTSEVICH, ML .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (02) :123-129
[23]  
MARTINEC E, RU9151
[24]   Nonperturbative model of Liouville gravity [J].
Matone, M .
JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (04) :381-398
[25]   UNIFORMIZATION THEORY AND 2D GRAVITY .1. LIOUVILLE ACTION AND INTERSECTION-NUMBERS [J].
MATONE, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (03) :289-335
[26]  
MOROZOV A, HEPTH9303139
[27]   A SOLUTION OF 2-DIMENSIONAL TOPOLOGICAL QUANTUM-GRAVITY [J].
VERLINDE, E ;
VERLINDE, H .
NUCLEAR PHYSICS B, 1991, 348 (03) :457-489
[28]   ON THE STRUCTURE OF THE TOPOLOGICAL PHASE OF 2-DIMENSIONAL GRAVITY [J].
WITTEN, E .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :281-332
[29]  
Witten E., 1991, Surveys in Differential Geometry, P243, DOI DOI 10.4310/SDG.1990.V1.N1.A5
[30]   ON THE HOMOLOGY OF THE MODULI SPACE OF STABLE CURVES [J].
WOLPERT, S .
ANNALS OF MATHEMATICS, 1983, 118 (03) :491-523