Algebraic-geometrical formulation of two-dimensional quantum gravity

被引:7
作者
Bonelli, G
Marchetti, PA
Matone, M
机构
[1] Department of Physics, 'G. Galilei', Ist. Nazionale di Fisica Nucleare, University of Padova, 35131 Padova
关键词
two-dimensional quantum gravity; Riemann surfaces; Painleve I recursion relations; Weil-Petersson two-forms; Liouville path integral;
D O I
10.1007/BF00714381
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painleve I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 31 条
[11]   MEAN FIELD-THEORY, TOPOLOGICAL FIELD-THEORY, AND MULTIMATRIX MODELS [J].
DIJKGRAAF, R ;
WITTEN, E .
NUCLEAR PHYSICS B, 1990, 342 (03) :486-522
[12]   CONFORMAL FIELD-THEORY AND 2-D QUANTUM-GRAVITY [J].
DISTLER, J ;
KAWAI, H .
NUCLEAR PHYSICS B, 1989, 321 (02) :509-527
[13]   STRINGS IN LESS THAN ONE DIMENSION [J].
DOUGLAS, MR ;
SHENKER, SH .
NUCLEAR PHYSICS B, 1990, 335 (03) :635-654
[14]   ON THE VARIATION IN THE CO-HOMOLOGY OF THE SYMPLECTIC FORM OF THE REDUCED PHASE-SPACE [J].
DUISTERMAAT, JJ ;
HECKMAN, GJ .
INVENTIONES MATHEMATICAE, 1982, 69 (02) :259-268
[15]   THE INTEGRABLE ANALYTIC-GEOMETRY OF QUANTUM STRING [J].
FRIEDAN, D ;
SHENKER, S .
PHYSICS LETTERS B, 1986, 175 (03) :287-296
[16]   THE ANALYTIC-GEOMETRY OF TWO-DIMENSIONAL CONFORMAL FIELD-THEORY [J].
FRIEDAN, D ;
SHENKER, S .
NUCLEAR PHYSICS B, 1987, 281 (3-4) :509-545
[17]  
GINSPARG P, LAUR914101
[18]  
Ginsparg P., 1992, HEPTH9304011
[19]   A NONPERTURBATIVE TREATMENT OF 2-DIMENSIONAL QUANTUM-GRAVITY [J].
GROSS, DJ ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :333-365
[20]   COMBINATORICS OF THE MODULAR GROUP-II THE KONTSEVICH INTEGRALS [J].
ITZYKSON, C ;
ZUBER, JB .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (23) :5661-5705