Conjugation following pair formation in Tetrahymena can be divided into three distinct sequences of events: prezygotic development, postzygotic development, and exconjugant development. The decision to proceed with postzygotic development is governed by a developmental checkpoint occurring sometime during the middle stages of conjugation. A second developmental decision is made to initiate pair separation and exconjugant development. This paper examines the phenotypes of five newly isolated conjugation mutants (cnj6-cnj10) which affect middle and late events within the conjugation program. cnj6 mutants exhibit normal nuclear behavior throughout development up to and including differentiation of new macronuclear anlagen. Pairs arrest at this developmental endpoint, unable to dissociate. cnj7 and cnj8 eliminate the third prezygotic nuclear division and the first postzygotic nuclear division. All subsequent developmental events appear normal. cnj9 eliminates the second postzygotic nuclear division, and subsequently, new macronuclei fail to develop despite parental macronuclear degradation. cnj10 results in a pleiotropic phenotype characterized by failure of numerous events which all appear to involve nuclear-cytoskeletal interactions. These defects include nuclear selection (anchoring nuclei to the exchange junction), pronuclear exchange, pronuclear fusion, and anchoring postzygotic nuclear division products to the posterior cell cortex. These mutant phenotypes are used to draw inferences regarding developmental dependencies that govern a cell's entry into the postzygotic and exconjugant developmental programs. (C) 1997 Academic Press.