High capacity xylose transport in Candida intermedia PYCC 4715

被引:21
作者
Gárdonyi, M
Österberg, M
Rodrigues, C
Spencer-Martins, I
Hahn-Hägerdal, B
机构
[1] Lund Univ, Dept Appl Microbiol, S-22100 Lund, Sweden
[2] Univ Nova Lisboa, Fac Sci & Technol, Ctr Recursos Microbiol, CREM, P-2829516 Caparica, Portugal
关键词
sugar transport; hemicellulose; xylose; fermentation;
D O I
10.1016/S1567-1356(02)00137-X
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Xylose-utilising yeasts were screened to identify strains with high xylose transport capacity. Among the fastest-growing strains in xylose medium, Candida intermedia PYCC 4715 showed the highest xylose transport capacity. Maximal specific growth rate was the same in glucose and xylose media (mu(max) = 0.5 h(-1), 30degreesC). Xylose transport showed biphasic kinetics when cells were grown in either xylose- or glucose-limited culture. The high-affinity xylose/proton symport system (K-m = 0.2 mM, V-max = 7.5 mmol h(-1) g(-1)) was more repressed by glucose than by xylose. The less specific low-affinity transport system (K = 50 mM, V-max = 11 mmol h(-1) g(-1)) appeared to operate through a facilitated-diffusion mechanism and was expressed constitutively. Inhibition experiments showed that glucose is a substrate of both xylose transport systems. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 36 条
[1]   KINETIC-ANALYSIS OF D-XYLOSE TRANSPORT IN RHODOTORULA-GLUTINIS [J].
ALCORN, ME ;
GRIFFIN, CC .
BIOCHIMICA ET BIOPHYSICA ACTA, 1978, 510 (02) :361-371
[2]   NADH-LINKED ALDOSE REDUCTASE - THE KEY TO ANAEROBIC ALCOHOLIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1984, 19 (04) :256-260
[3]  
BUSTURIA A, 1986, J GEN MICROBIOL, V132, P379
[4]  
de Vries RP, 1999, RES MICROBIOL, V150, P281
[5]   Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus [J].
Diderich, JA ;
Teusink, B ;
Valkier, J ;
Anjos, J ;
Spencer-Martins, I ;
van Dam, K ;
Walsh, MC .
MICROBIOLOGY-SGM, 1999, 145 :3447-3454
[6]   CHARACTERIZATION OF XYLOSE UPTAKE IN THE YEASTS PICHIA-HEEDII AND PICHIA-STIPITIS [J].
DOES, AL ;
BISSON, LF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (01) :159-164
[7]   FERMENTATION OF D-XYLOSE TO ETHANOL BY A STRAIN OF CANDIDA-SHEHATAE [J].
DUPREEZ, JC ;
VANDERWALT, JP .
BIOTECHNOLOGY LETTERS, 1983, 5 (05) :357-362
[8]   Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J].
Eliasson, A ;
Christensson, C ;
Wahlbom, CF ;
Hahn-Hägerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3381-3386
[9]  
Hahn-Hagerdal B, 2001, Adv Biochem Eng Biotechnol, V73, P53
[10]   XYLITOL PRODUCTION BY RECOMBINANT SACCHAROMYCES-CEREVISIAE [J].
HALLBORN, J ;
WALFRIDSSON, M ;
AIRAKSINEN, U ;
OJAMO, H ;
HAHNHAGERDAL, B ;
PENTTILA, M ;
KERANEN, S .
BIO-TECHNOLOGY, 1991, 9 (11) :1090-1095