PTEN regulates Akt kinase activity in hippocampal neurons and increases their sensitivity to glutamate and apoptosis

被引:89
作者
Gary, DS
Mattson, MP
机构
[1] NIA, Gerontol Res Ctr, Neurosci Lab, Baltimore, MD 21224 USA
[2] Univ Kentucky, Dept Anat & Neurobiol, Lexington, KY 40536 USA
关键词
Alzheimer's disease; epilepsy; kainic acid; seizures;
D O I
10.1385/NMM:2:3:261
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The tumor suppressor phosphatase PTEN can promote apoptosis of mitotic cells by inhibiting activation of the cell survival kinase Akt. PTEN is essential for normal embryonic development, PTEN expression is associated with neuronal differentiation, and deletion of PTEN in the mouse brain results in seizures, ataxia, and other abnormalities. However, the possible roles of PTEN in regulating neuronal survival are not known. We provide evidence that PTEN sensitizes hippocampal neurons to excitotoxic death in culture and in vivo. Overexpression of wildtype PTEN decreased, while a dominant-negative PTEN increased, levels of activated Akt in cultured hippocampal neurons. Wild-type PTEN promoted, while dominant-negative PTEN prevented, apoptotic death of neurons exposed to the excitatory amino acid neurotransmitter glutamate. Hippocampal neurons of mice with reduced PTEN levels were more resistant to seizure-induced death compared to wild-type littermates. These findings demonstrate a cell death function of PTEN in hippocampal neurons and identify PTEN as a potential therapeutic target for neurodegenerative disorders that involve excitotoxicity and apoptosis. The ability of PTEN to modify neuronal sensitivity to glutamate also suggests possible roles for PTEN in regulating developmental and synaptic plasticity.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 39 条
[1]   Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease [J].
Backman, SA ;
Stambolic, V ;
Suzuki, A ;
Haight, J ;
Elia, A ;
Pretorius, J ;
Tsao, MS ;
Shannon, P ;
Bolon, B ;
Ivy, GO ;
Mak, TW .
NATURE GENETICS, 2001, 29 (04) :396-403
[2]   NT-3 AND BDNF PROTECT CNS NEURONS AGAINST METABOLIC EXCITOTOXIC INSULTS [J].
CHENG, B ;
MATTSON, MP .
BRAIN RESEARCH, 1994, 640 (1-2) :56-67
[3]  
Crowder RJ, 1998, J NEUROSCI, V18, P2933
[4]   Cellular survival: a play in three Akts [J].
Datta, SR ;
Brunet, A ;
Greenberg, ME .
GENES & DEVELOPMENT, 1999, 13 (22) :2905-2927
[5]  
Davies MA, 1999, CANCER RES, V59, P2551
[6]   Impaired Fas response and autoimmunity in Pten+/- mice [J].
Di Cristofano, A ;
Kotsi, P ;
Peng, YF ;
Cordon-Cardo, C ;
Elkon, KB ;
Pandolfi, PP .
SCIENCE, 1999, 285 (5436) :2122-2125
[7]   The multiple roles of PTEN in tumor suppression [J].
Di Cristofano, A ;
Pandolfi, PP .
CELL, 2000, 100 (04) :387-390
[8]   The role of excitotoxicity in neurodegenerative disease: Implications for therapy [J].
Doble, A .
PHARMACOLOGY & THERAPEUTICS, 1999, 81 (03) :163-221
[9]   Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice [J].
Duan, WZ ;
Guo, ZH ;
Mattson, MP .
JOURNAL OF NEUROCHEMISTRY, 2001, 76 (02) :619-626
[10]   Regulation of neuronal survival by the serine-threonine protein kinase Akt [J].
Dudek, H ;
Datta, SR ;
Franke, TF ;
Birnbaum, MJ ;
Yao, RJ ;
Cooper, GM ;
Segal, RA ;
Kaplan, DR ;
Greenberg, ME .
SCIENCE, 1997, 275 (5300) :661-665