Fast sweeping algorithms for a class of Hamilton-Jacobi equations

被引:316
作者
Tsai, YHR [1 ]
Cheng, LT
Osher, S
Zhao, HK
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[5] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Hamilton-Jacobi equations; fast marching; fast sweeping; upwind finite differencing; eikonal equations;
D O I
10.1137/S0036142901396533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a Godunov-type numerical flux for the class of strictly convex, homogeneous Hamiltonians that includes H(p, q) = root ap(2) + bq(2) - 2cpq, c(2) < ab. We combine our Godunov numerical fluxes with simple Gauss - Seidel- type iterations for solving the corresponding Hamilton-Jacobi (HJ) equations. The resulting algorithm is fast since it does not require a sorting strategy as found, e. g., in the fast marching method. In addition, it provides a way to compute solutions to a class of HJ equations for which the conventional fast marching method is not applicable. Our experiments indicate convergence after a few iterations, even in rather difficult cases.
引用
收藏
页码:673 / 694
页数:22
相关论文
共 27 条
[1]   THE NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM FOR HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
OSHER, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (02) :344-351
[2]  
BARTH TJ, 2001, NAS01010 AM RES CTR
[3]   Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control [J].
Boué, M ;
Dupuis, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :667-695
[4]   Motion of curves constrained on surfaces using a level-set approach [J].
Cheng, LT ;
Burchard, P ;
Merriman, B ;
Osher, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :604-644
[5]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[6]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[7]   EUCLIDEAN DISTANCE MAPPING [J].
DANIELSSON, PE .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 14 (03) :227-248
[8]   Two new methods for simulating photolithography development in 3D [J].
Helmsen, J ;
Puckett, EG ;
Colella, P ;
Dorr, M .
OPTICAL MICROLITHOGRAPHY IX, 1996, 2726 :253-261
[9]   Weighted ENO schemes for Hamilton-Jacobi equations [J].
Jiang, GS ;
Peng, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) :2126-2143
[10]   GEOMETRICAL THEORY OF DIFFRACTION [J].
KELLER, JB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1962, 52 (02) :116-+