Fast sweeping algorithms for a class of Hamilton-Jacobi equations

被引:316
作者
Tsai, YHR [1 ]
Cheng, LT
Osher, S
Zhao, HK
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[5] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Hamilton-Jacobi equations; fast marching; fast sweeping; upwind finite differencing; eikonal equations;
D O I
10.1137/S0036142901396533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a Godunov-type numerical flux for the class of strictly convex, homogeneous Hamiltonians that includes H(p, q) = root ap(2) + bq(2) - 2cpq, c(2) < ab. We combine our Godunov numerical fluxes with simple Gauss - Seidel- type iterations for solving the corresponding Hamilton-Jacobi (HJ) equations. The resulting algorithm is fast since it does not require a sorting strategy as found, e. g., in the fast marching method. In addition, it provides a way to compute solutions to a class of HJ equations for which the conventional fast marching method is not applicable. Our experiments indicate convergence after a few iterations, even in rather difficult cases.
引用
收藏
页码:673 / 694
页数:22
相关论文
共 27 条
[11]   Computing geodesic paths on manifolds [J].
Kimmel, R ;
Sethian, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8431-8435
[12]   Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces [J].
Mémoli, F ;
Sapiro, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 173 (02) :730-764
[14]   Level set methods: An overview and some recent results [J].
Osher, S ;
Fedkiw, RP .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (02) :463-502
[15]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[16]   HIGH-ORDER ESSENTIALLY NONOSCILLATORY SCHEMES FOR HAMILTON-JACOBI EQUATIONS [J].
OSHER, S ;
SHU, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) :907-922
[17]  
OSHER S, 1997, ASIAN J MATH, V1, P560
[18]  
OSHER S, UNPUB GEN FAST ALGOR
[19]  
Peng D., 1999, NONLINEAR PARTIAL DI, P251
[20]   A VISCOSITY SOLUTIONS APPROACH TO SHAPE-FROM-SHADING [J].
ROUY, E ;
TOURIN, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :867-884