Critique of q-entropy for thermal statistics -: art. no. 036114

被引:109
作者
Nauenberg, M [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.036114
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
During the past 12 years there have been numerous papers on a relation between entropy and probability which is nonadditive and has a parameter q that depends on the nature of the thermodynamic system under consideration. For q = 1 this relation corresponds to the Boltzmann-Gibbs entropy, but for other values of q it is claimed that it leads to a formalism that is consistent with the laws of thermodynamics. However, it is shown here that the joint entropy for systems having different values of q is not defined in this formalism, and consequently fundamental thermodynamic concepts such as temperature and heat exchange cannot be considered for such systems. Moreover, for q not equal 1 the probability distribution for weakly interacting systems does not factor into the product of the probability distribution for the separate systems, leading to spurious correlations and other unphysical consequences, e.g., nonextensive energy, that have been ignored in various applications given in the literature.
引用
收藏
页码:1 / 036114
页数:6
相关论文
共 42 条
[1]   Correlation induced by Tsallis' nonextensivity [J].
Abe, S .
PHYSICA A, 1999, 269 (2-4) :403-409
[2]   Macroscopic thermodynamics based on composable nonextensive entropies [J].
Abe, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :62-68
[3]   Thermodynamic limit of a classical gas in nonextensive statistical mechanics: Negative specific heat and polytropism [J].
Abe, S .
PHYSICS LETTERS A, 1999, 263 (4-6) :424-429
[4]   Classical gas in nonextensive optimal Lagrange multipliers formalism [J].
Abe, S ;
Martínez, S ;
Pennini, F ;
Plastino, A .
PHYSICS LETTERS A, 2001, 278 (05) :249-254
[5]   Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters -: art. no. 011302 [J].
Ahmad, QR ;
Allen, RC ;
Andersen, TC ;
Anglin, JD ;
Barton, JC ;
Beier, EW ;
Bercovitch, M ;
Bigu, J ;
Biller, SD ;
Black, RA ;
Blevis, I ;
Boardman, RJ ;
Boger, J ;
Bonvin, E ;
Boulay, MG ;
Bowler, MG ;
Bowles, TJ ;
Brice, SJ ;
Browne, MC ;
Bullard, TV ;
Bühler, G ;
Cameron, J ;
Chan, YD ;
Chen, HH ;
Chen, M ;
Chen, X ;
Cleveland, BT ;
Clifford, ETH ;
Cowan, JHM ;
Cowen, DF ;
Cox, GA ;
Dai, X ;
Dalnoki-Veress, F ;
Davidson, WF ;
Doe, PJ ;
Doucas, G ;
Dragowsky, MR ;
Duba, CA ;
Duncan, FA ;
Dunford, M ;
Dunmore, JA ;
Earle, ED ;
Elliott, SR ;
Evans, HC ;
Ewan, GT ;
Farine, J ;
Fergani, H ;
Ferraris, AP ;
Ford, RJ ;
Formaggio, JA .
PHYSICAL REVIEW LETTERS, 2002, 89 (01)
[6]   Why Tsallis statistics? [J].
Baranger, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :27-31
[7]   Non-additivity of Tsallis entropies and fluctuations of temperature [J].
Beck, C .
EUROPHYSICS LETTERS, 2002, 57 (03) :329-333
[8]   Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow [J].
Beck, C ;
Lewis, GS ;
Swinney, HL .
PHYSICAL REVIEW E, 2001, 63 (03) :353031-353034
[9]  
BECK C, 2002, PHYS REV LETT, V87
[10]   Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics [J].
Boghosian, BM .
PHYSICAL REVIEW E, 1996, 53 (05) :4754-4763