Nanometer-thick films of titanium oxide acting as electrolyte in the polymer electrolyte fuel cell

被引:33
作者
Ekstrom, Henrik [1 ]
Wickman, Bjoern
Gustavsson, Marie
Hanarp, Per
Eurenius, Lisa
Olsson, Eva
Lindbergh, Goeran
机构
[1] KTH, Sch Chem & Chem Engn, SE-10044 Stockholm, Sweden
[2] Chalmers, Dept Appl Phys, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden
关键词
proton conduction; titanium oxide; fuel cell; oxygen reduction; thermal evaporation;
D O I
10.1016/j.electacta.2006.12.002
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
0-18nm-thick titanium, zirconium and tantalum oxide films are thermally evaporated on Nation 117 membranes, and used as thin spacer electrolyte layers between the Nation and a 3 nm Pt catalyst film. Electrochemical characterisation of the films in terms of oxygen reduction activity, high frequency impedance and cyclic voltammetry in nitrogen is performed in a fuel cell at 80 degrees C and full humidification. Titanium oxide films with thicknesses up to 18 nm are shown to conduct protons, whereas zirconium oxide and tantalum oxide block proton transport already at a thickness of 1.5 nm. The performance for oxygen reduction is higher for a bi-layered film of 3 nm platinum on 1.5 or 18 nm titanium oxide, than for a pure 3 nm platinum film with no spacer layer. The improvement in oxygen reduction performance is ascribed to a higher active surface area of platinum, i.e. no beneficial effect of combining platinum with zirconium, tantalum or titanium oxides on the intrinsic oxygen reduction activity is seen. The results suggest that TiO2 may be used as electrolyte in fuel cell electrodes, and that low-temperature proton exchange fuel cells could be possible using TiO2 as electrolyte. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4239 / 4245
页数:7
相关论文
共 17 条
[1]   PROTON CONDUCTION IN H2TI4O9,1.2H2O [J].
ANDERSEN, EK ;
ANDERSEN, JGK ;
SKOU, E .
SOLID STATE IONICS, 1988, 27 (03) :181-187
[2]   Composite mesoporous titania nafion-based membranes for direct methanol fuel cell operation at high temperature [J].
Baglio, V ;
Di Blasi, A ;
Aricò, AS ;
Antonucci, V ;
Antonucci, PL ;
Trakanprapai, C ;
Esposito, V ;
Licoccia, S ;
Traversa, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1373-A1377
[3]   Effect of TiO2 surface properties on performance of nafion-based composite membranes in high temperature and low relative humidity PEM fuel cells [J].
Chalkova, E ;
Fedkin, MV ;
Wesolowski, DJ ;
Lvov, SN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (09) :A1742-A1747
[4]   Nanoporous anatase ceramic membranes as fast-proton-conducting materials [J].
Colomer, MT .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2006, 26 (07) :1231-1236
[5]   Effect of humidity on the ac conductivity of nanoporous TiO2 [J].
Garcia-Belmonte, G ;
Kytin, V ;
Dittrich, T ;
Bisquert, J .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (08) :5261-5264
[6]   In-situ measurements of gas permeability in fuel cell membranes using a cylindrical microelectrode [J].
Gode, P ;
Lindbergh, G ;
Sundholm, G .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 518 (02) :115-122
[7]   Transmission electron microscopy 'windows' for nanofabricated structures [J].
Grant, AW ;
Hu, QH ;
Kasemo, B .
NANOTECHNOLOGY, 2004, 15 (09) :1175-1181
[8]   A novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance measurements [J].
Ihonen, J ;
Jaouen, F ;
Lindbergh, G ;
Sundholm, G .
ELECTROCHIMICA ACTA, 2001, 46 (19) :2899-2911
[9]   Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties [J].
Kasuga, T .
THIN SOLID FILMS, 2006, 496 (01) :141-145
[10]   Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells [J].
Liu, Zhaolin ;
Guo, Bing ;
Huang, Junchao ;
Hong, Liang ;
Han, Ming ;
Gan, Leong Ming .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :207-211