A rigorous framework for diffusion tensor calculus

被引:126
作者
Batchelor, PG
Moakher, M
Atkinson, D
Calamante, F
Connelly, A
机构
[1] Kings Coll London, Guys Hosp, Div Imaging Sci, London 9RT, England
[2] Ecole Natl Ingn Tunis, Lab Modelisat Math & Numer Sci Ingn, Belvedere, Tunisia
[3] UCL, Inst Child Hlth, Radiol & Phys Unit, London, England
关键词
positive definite; mean of tensors; tensor interpolation; anisotropy;
D O I
10.1002/mrm.20334
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In biological tissue, all eigenvalues of the diffusion tensor are assumed to be positive. Calculations in diffusion tensor MRI generally do not take into account this positive definiteness property of the tensor. Here, the space of positive definite tensors is used to construct a framework for diffusion tensor analysis. The method defines a distance function between a pair of tensors and the associated shortest path (geodesic) joining them. From this distance a method for computing tensor means, a new measure of anisotropy, and a method for tensor interpolation are derived. The method is illustrated using simulated and in vivo data. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:221 / 225
页数:5
相关论文
共 13 条
  • [1] Golub G. H., 1996, MATRIX COMPUTATIONS
  • [2] Analytical computation of the eigenvalues and eigenvectors in DT-MRI
    Hasan, KM
    Basser, PJ
    Parker, DL
    Alexander, AL
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2001, 152 (01) : 41 - 47
  • [3] Helgason S., 2001, DIFFERENTIAL GEOMETR
  • [4] COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX
    HIGHAM, NJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 103 : 103 - 118
  • [5] Spatial normalization and averaging of diffusion tensor MRI data sets
    Jones, DK
    Griffin, LD
    Alexander, DC
    Catani, M
    Horsfield, MA
    Howard, R
    Williams, SCR
    [J]. NEUROIMAGE, 2002, 17 (02) : 592 - 617
  • [6] Means and averaging in the group of rotations
    Moakher, M
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) : 1 - 16
  • [7] MOAKHER M, 2004, IN PRESS SIAM J MATR
  • [8] Diffusion and related transport mechanisms in brain tissue
    Nicholson, C
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (07) : 815 - 884
  • [9] A study of rotationally invariant and symmetric indices of diffusion anisotropy
    Papadakis, NG
    Xing, D
    Houston, GC
    Smith, JM
    Smith, MI
    James, MF
    Parsons, AA
    Huang, CLH
    Hall, LD
    Carpenter, TA
    [J]. MAGNETIC RESONANCE IMAGING, 1999, 17 (06) : 881 - 892
  • [10] Spatial normalization of diffusion tensor MRI using multiple channels
    Park, HJ
    Kubicki, M
    Shenton, ME
    Guimond, A
    McCarley, RW
    Maier, SE
    Kikinis, R
    Jolesz, FA
    Westin, CF
    [J]. NEUROIMAGE, 2003, 20 (04) : 1995 - 2009