Trust-region methods on Riemannian manifolds

被引:309
作者
Absil, P-A. [1 ]
Baker, C. G.
Gallivan, K. A.
机构
[1] Univ Catholique Louvain, Dept Engn Math, B-1348 Louvain, Belgium
[2] Univ Cambridge, Cambridge CB2 1RD, England
[3] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA
关键词
numerical optimization on manifolds; trust-region; truncated conjugate-gradient; Steihaug-Toint; global convergence; local convergence; superlinear convergence; symmetric eigenvalue problem;
D O I
10.1007/s10208-005-0179-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A general scheme for trust-region methods on Riemannian manifolds is proposed and analyzed. Among the various approaches available to (approximately) solve the trust-region subproblems, particular attention is paid to the truncated conjugate-gradient technique. The method is illustrated on problems from numerical linear algebra.
引用
收藏
页码:303 / 330
页数:28
相关论文
共 53 条
[1]   A truncated-CG style method for symmetric generalized eigenvalue problems [J].
Absil, PA ;
Baker, CG ;
Gallivan, KA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) :274-285
[2]  
Absil PA, 2005, LECT NOTES COMPUT SC, V3514, P33
[3]   Riemannian geometry of Grassmann manifolds with a view on algorithmic computation [J].
Absil, PA ;
Mahony, R ;
Sepulchre, R .
ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (02) :199-220
[4]  
ABSIL PA, 2006, CONVERGENCE ANAL RIE
[5]   Newton's method on Riemannian manifolds and a geometric model for the human spine [J].
Adler, RL ;
Dedieu, JP ;
Margulies, JY ;
Martens, M ;
Shub, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) :359-390
[6]  
[Anonymous], 2004, P 16 INT S MATH THEO
[7]  
[Anonymous], 1992, RIEMANNIAN GEOMETRY
[8]  
BERTSEKAS DP, 1995, NONLINEAR PROGRAMMIN
[9]  
Boothby W. M., 1975, An introduction to differentiable manifolds and Riemannian geometry
[10]   Methods for the approximation of the matrix exponential in a Lie-algebraic setting [J].
Celledoni, E ;
Iserles, A .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (02) :463-488