Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes

被引:141
作者
Kobayashi, Kazuo [1 ]
机构
[1] Nara Inst Sci & Technol, Gard Sch Informat Sci, Nara 630092, Japan
关键词
D O I
10.1128/JB.00157-07
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Biofilms are structured multicellular communities of bacteria that form through a developmental process. In standing culture, undomesticated strains of Bacillus subtilis produce a floating biofilm, called a pellicle, with a distinct macroscopic architecture. Here we report on a comprehensive analysis of B. subtilis pellicle formation, with a focus on transcriptional regulators and morphological changes. To date, 288 known or putative transcriptional regulators encoded by the B. subtilis genome have been identified or assigned based on similarity to other known proteins. The genes encoding these regulators were systematically disrupted, and the effects of the mutations on pellicle formation were examined, resulting in the identification of 19 regulators involved in pellicle formation. In addition, morphological analysis revealed that pellicle formation begins with the formation of cell chains, which is followed by clustering and degradation of cell chains. Genetic and morphological evidence showed that each stage of morphological change can be defined genetically, based on mutants of transcriptional regulators, each of which blocks pellicle formation at a specific morphological stage. Formation and degradation of cell chains are controlled by down- and up-regulation of sigma(D)- and sigma(H)-dependent autolysins expressed at specific stages during pellicle formation. Transcriptional analysis revealed that the transcriptional activation of sigH depends on the formation of cell clusters, which in turn activates transcription of sigma(H)-dependent autolysin in cell clusters. Taken together, our results reveal relationships between transcriptional regulators and morphological development during pellicle formation by B. subtilis.
引用
收藏
页码:4920 / 4931
页数:12
相关论文
共 54 条
[1]  
Aizawa S.-I., 2002, Bacillus subtilis and Its Closest Relatives: From Genes to Cells, P437
[2]   The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions [J].
Albano, M ;
Smits, WK ;
Ho, LTY ;
Kraigher, B ;
Mandic-Mulec, I ;
Kuipers, OP ;
Dubnau, D .
JOURNAL OF BACTERIOLOGY, 2005, 187 (06) :2010-2019
[3]   SINI MODULATES THE ACTIVITY OF SINR, A DEVELOPMENTAL SWITCH PROTEIN OF BACILLUS-SUBTILIS, BY PROTEIN PROTEIN-INTERACTION [J].
BAI, U ;
MANDICMULEC, I ;
SMITH, I .
GENES & DEVELOPMENT, 1993, 7 (01) :139-148
[4]   A major protein component of the Bacillus subtilis biofilm matrix [J].
Branda, SS ;
Chu, F ;
Kearns, DB ;
Losick, R ;
Kolter, R .
MOLECULAR MICROBIOLOGY, 2006, 59 (04) :1229-1238
[5]   Biofilms:: the matrix revisited [J].
Branda, SS ;
Vik, Å ;
Friedman, L ;
Kolter, R .
TRENDS IN MICROBIOLOGY, 2005, 13 (01) :20-26
[6]   Genes involved in formation of structured multicellular communities by Bacillus subtilis [J].
Branda, SS ;
González-Pastor, JE ;
Dervyn, E ;
Ehrlich, SD ;
Losick, R ;
Kolter, R .
JOURNAL OF BACTERIOLOGY, 2004, 186 (12) :3970-3979
[7]   Fruiting body formation by Bacillus subtilis [J].
Branda, SS ;
González-Pastor, JE ;
Ben-Yehuda, S ;
Losick, R ;
Kolter, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11621-11626
[8]   Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon [J].
Calvio, C ;
Celandroni, F ;
Ghelardi, E ;
Amati, G ;
Salvetti, S ;
Ceciliani, F ;
Galizzi, A ;
Senesi, S .
JOURNAL OF BACTERIOLOGY, 2005, 187 (15) :5356-5366
[9]   The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides [J].
Cao, M ;
Helmann, JD .
JOURNAL OF BACTERIOLOGY, 2004, 186 (04) :1136-1146
[10]   Biofilm-defective mutants of Bacillus subtilis [J].
Chagneau, C ;
Saier, MH .
JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 8 (03) :177-188