Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models

被引:111
作者
Boykin, TB [1 ]
Klimeck, G
Friesen, M
Coppersmith, SN
von Allmen, P
Oyafuso, F
Lee, S
机构
[1] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
[5] Purdue Univ, Sch Elect & Comp Engn, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
来源
PHYSICAL REVIEW B | 2004年 / 70卷 / 16期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.70.165325
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A detailed study of reduced-basis tight-binding models of electrons in semiconducting quantum wells is presented. The focus is on systems with degenerate valleys, such as silicon in silicon germanium heterostructures, in the low-density limit, relevant to proposed quantum computing architectures. Analytic results for the bound states of systems with hard-wall boundaries are presented and used to characterize the valley splitting in silicon quantum wells. The analytic solution in a no-spin-orbit model agrees well with larger tight-binding calculations that do include spin-orbit coupling. Numerical investigations of the valley splitting for finite band offsets are presented that indicate that the hard-wall results are a good guide to the behavior in real quantum wells.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 47 条
[1]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[2]   Quantitative simulation of a resonant tunneling diode [J].
Bowen, RC ;
Klimeck, G ;
Lake, RK ;
Frensley, WR ;
Moise, T .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (07) :3207-3213
[3]   Generalized eigenproblem method for surface and interface states: The complex bands of GaAs and AlAs [J].
Boykin, TB .
PHYSICAL REVIEW B, 1996, 54 (11) :8107-8115
[4]   Tunneling calculations for systems with singular coupling matrices: Results for a simple model [J].
Boykin, TB .
PHYSICAL REVIEW B, 1996, 54 (11) :7670-7673
[5]   The discretized Schrodinger equation and simple models for semiconductor quantum wells [J].
Boykin, TB ;
Klimeck, G .
EUROPEAN JOURNAL OF PHYSICS, 2004, 25 (04) :503-514
[6]   Valley splitting in strained silicon quantum wells [J].
Boykin, TB ;
Klimeck, G ;
Eriksson, MA ;
Friesen, M ;
Coppersmith, SN ;
von Allmen, P ;
Oyafuso, F ;
Lee, S .
APPLIED PHYSICS LETTERS, 2004, 84 (01) :115-117
[7]   Charged pseudospin textures in double-layer quantum Hall systems: Bimerons and meron crystals [J].
Brey, L ;
Fertig, HA ;
Cote, R ;
MacDonald, AH .
PHYSICAL REVIEW B, 1996, 54 (23) :16888-16902
[8]   TIGHT-BINDING CALCULATIONS OF VALENCE BANDS OF DIAMOND AND ZINCBLENDE CRYSTALS [J].
CHADI, DJ ;
COHEN, ML .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1975, 68 (01) :405-419
[9]  
CHIANG JC, 1994, JPN J APPL PHYS PT 1, V33, P294
[10]   Microscopic theory of nanostructured semiconductor devices: beyond the envelope-function approximation [J].
Di Carlo, A .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (01) :R1-R31