Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations

被引:259
作者
Johnson, SJ [1 ]
Taylor, JS [1 ]
Beese, LS [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
关键词
D O I
10.1073/pnas.0630532100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA polymerases replicate DNA by adding nucleotides to a growing primer strand while avoiding frameshift and point mutations. Here we present a series of up to six successive replication events that were obtained by extension of a primed template directly in a crystal of the thermostable Bacillus DNA polymerase I. The 6-by extension involves a 20-Angstrom translocation of the DNA duplex, representing the largest molecular movement observed in a protein crystal. In addition, we obtained the structure of a "closed" conformation of the enzyme with a bound triphosphate juxtaposed to a template and a dideoxy-terminated primer by constructing a point mutant that destroys a crystal lattice contact stabilizing the wild-type polymerase in an "open" conformation. Together, these observations allow many of the steps involved in DNA replication to be observed in the same enzyme at near atomic detail. The successive replication events observed directly by catalysis in the crystal confirm the general reaction sequence deduced from observations obtained by using several other polymerases and further refine critical aspects of the known reaction mechanism, and also allow us to propose new features that concern the regulated transfer of the template strand between a preinsertion site and an insertion site. We propose that such regulated transfer is an important element in the prevention of frameshift mutations in high-fidelity DNA polymerases. The ability to observe processive, high-fidelity replication directly in a crystal establishes this polymerase as a powerful model system for mechanistic studies in which the structural consequences of mismatches and DNA adducts are observed.
引用
收藏
页码:3895 / 3900
页数:6
相关论文
共 40 条
[1]  
BEBENEK K, 1990, J BIOL CHEM, V265, P13878
[2]  
BEBENEK K, 1993, REVERSE TRANSCRIPTAS, P85
[3]   CRYSTAL-STRUCTURES OF THE KLENOW FRAGMENT OF DNA-POLYMERASE-I COMPLEXED WITH DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE [J].
BEESE, LS ;
FRIEDMAN, JM ;
STEITZ, TA .
BIOCHEMISTRY, 1993, 32 (51) :14095-14101
[4]   Base miscoding and strand misalignment errors by mutator klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain [J].
Bell, JB ;
Eckert, KA ;
Joyce, CM ;
Kunkel, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (11) :7345-7351
[5]   DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase β -: Implication for the identity of the rate-limiting conformational change [J].
Berg, BJV ;
Beard, WA ;
Wilson, SH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (05) :3408-3416
[6]   Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes [J].
Brautigam, CA ;
Steitz, TA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (01) :54-63
[7]   A MUTANT OF DNA-POLYMERASE-I (KLENOW FRAGMENT) WITH REDUCED FIDELITY [J].
CARROLL, SS ;
COWART, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1991, 30 (03) :804-813
[8]   AN ATTEMPT TO UNIFY THE STRUCTURE OF POLYMERASES [J].
DELARUE, M ;
POCH, O ;
TORDO, N ;
MORAS, D ;
ARGOS, P .
PROTEIN ENGINEERING, 1990, 3 (06) :461-467
[9]   Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution [J].
Doublié, S ;
Tabor, S ;
Long, AM ;
Richardson, CC ;
Ellenberger, T .
NATURE, 1998, 391 (6664) :251-258
[10]   An open and closed case for all polymerases [J].
Doublié, S ;
Sawaya, MR ;
Ellenberger, T .
STRUCTURE, 1999, 7 (02) :R31-R35