Digital communication using chaos and nonlinear dynamics

被引:26
作者
Illing, Lucas [1 ]
机构
[1] Reed Coll, Dept Phys, Portland, OR 97202 USA
关键词
Chaos; Synchronization; Chaos communication; Optoelectronic; Pulse position modulation; SYMBOLIC DYNAMICS; SYNCHRONIZATION; MODULATION; STABILITY; ATTRACTOR; SYSTEM;
D O I
10.1016/j.na.2009.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Digital communication using synchronized chaos is reviewed on the example of an optoelectronic transceiver and a wireless transceiver that utilizes chaotic pulse position modulation. Challenges that arise due to noise and other distortions occurring in the communication channel are pointed out and ways to improve the noise characteristics of the synchronization and to make chaos communication robust enough to work with realistic channels are discussed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E2958 / E2964
页数:7
相关论文
共 45 条
[1]   Synchronization and communication using semiconductor lasers with optoelectronic feedback [J].
Abarbanel, HDI ;
Kennel, MB ;
Illing, L ;
Tang, S ;
Chen, HF ;
Liu, JM .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (10) :1301-1311
[2]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[3]  
[Anonymous], 2011, J ACOUST SOC AM, DOI DOI 10.1121/1.3598464
[4]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[5]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[6]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[7]   Attractor bubbling in coupled hyperchaotic oscillators [J].
Blakely, JN ;
Gauthier, DJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (04) :835-847
[8]   Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds [J].
Brown, R ;
Rulkov, NF .
CHAOS, 1997, 7 (03) :395-413
[9]   Design of spread-spectrum sequences using chaotic dynamical systems and ergodic theory [J].
Chen, CC ;
Yao, K ;
Umeno, K ;
Biglieri, E .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (09) :1110-1114
[10]   Stochastic-calculus-based numerical evaluation and performance analysis of chaotic communication systems [J].
Chen, CC ;
Yao, K .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2000, 47 (12) :1663-1672