Self-ordered nanopore and nanotube platforms for drug delivery applications

被引:193
作者
Losic, Dusan [1 ]
Simovic, Spomenka [1 ]
机构
[1] Univ S Australia, Ian Wark Res Inst, Adelaide, SA 5095, Australia
基金
澳大利亚研究理事会;
关键词
drug delivery; electrochemical anodisation; nanoporous alumina; nanotube titania; POROUS ANODIC ALUMINA; TIO2; NANOTUBES; POLYELECTROLYTE MULTILAYERS; CONTROLLED FABRICATION; MESOPOROUS MATERIALS; TITANIA NANOTUBES; MEMBRANES; ARRAYS; GROWTH; SYSTEMS;
D O I
10.1517/17425240903300857
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The application of nanotechnology to medicine termed as 'nanomedicine' is recognised as an emerging field with enormous potential for developing new therapeutic concepts. A range of nanoscale materials have been explored in the last few years for drug delivery to address the problems associated with conventional drug therapies such as limited drug solubility, poor biodistribution, lack of selectivity and unfavourable pharmacokinetics. Among them, nanoporous materials with ordered and controlled pore structures, high surface area and pore volume, attracted great attention, particularly for implantable drug delivery systems. This review presents the recent progress in this field focused on electrochemically engineered nanopores/nanotube materials such as nanoporous alumina and nanotubular titania. The basic concept of fabrication of these unique materials using a self-ordering process, description of their structural properties, biocompatibility and recent applications for therapeutic implants is presented.
引用
收藏
页码:1363 / 1381
页数:19
相关论文
共 120 条
[101]   Nanotubes by template wetting:: A modular assembly system [J].
Steinhart, M ;
Wehrspohn, RB ;
Gösele, U ;
Wendorff, JH .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (11) :1334-1344
[102]   Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion [J].
Swan, EEL ;
Popat, KC ;
Desai, TA .
BIOMATERIALS, 2005, 26 (14) :1969-1976
[103]   Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture [J].
Swan, EEL ;
Popat, KC ;
Grimes, CA ;
Desai, TA .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2005, 72A (03) :288-295
[104]   Application of anodized aluminum in fluorescence detection of biological species [J].
Takmakov, Pavel ;
Vlassiouk, Ivan ;
Smirnov, Sergei .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 385 (05) :954-958
[105]   Microfabricated drug delivery systems: from particles to pores [J].
Tao, SL ;
Desai, TA .
ADVANCED DRUG DELIVERY REVIEWS, 2003, 55 (03) :315-328
[106]   Porous anodic alumina: Fabrication, characterization and applications [J].
Thompson, GE .
THIN SOLID FILMS, 1997, 297 (1-2) :192-201
[107]   Nanoporous aluminum oxide membranes for filtration and biofunctionalization [J].
Thormann, Annika ;
Teuscher, Nico ;
Pfannmoeller, Monika ;
Rothe, Ulrich ;
Heilmann, Andreas .
SMALL, 2007, 3 (06) :1032-1040
[108]   Mesoporous materials for drug delivery [J].
Vallet-Regi, Maria ;
Balas, Francisco ;
Arcos, Daniel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (40) :7548-7558
[109]   Gold nanotube membranes functionalised with fluorinated thiols for selective molecular transport [J].
Velleman, L. ;
Shapter, J. G. ;
Losic, D. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 328 (1-2) :121-126
[110]   Structural and chemical modification of porous alumina membranes [J].
Velleman, Leonora ;
Triani, Gerry ;
Evans, Peter J. ;
Shapter, Joe G. ;
Losic, Dusan .
MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 126 (1-2) :87-94