Structural Degradation at the Surface of a TiO2-Based Nanomaterial Used in Cosmetics

被引:160
作者
Auffan, Melanie [1 ,2 ]
Pedeutour, Maxime [1 ]
Rose, Jerome [1 ,2 ]
Masion, Armand [1 ,2 ]
Ziarelli, Fabio [3 ]
Borschneck, Daniel [1 ,2 ]
Chaneac, Corinne [4 ]
Botta, Celine [1 ,2 ]
Chaurand, Perrine [1 ,2 ]
Labille, Jerome [1 ,2 ]
Bottero, Jean-Yves [1 ,2 ]
机构
[1] Aix Marseille Univ, CNRS, UMR 6635, CEREGE, F-13545 Aix En Provence, France
[2] Nanotechnol iCEINT, Int Consortium Environm Implicat, F-13545 Aix En Provence, France
[3] Federat Rech Sci Chim Marseille, F-13397 Marseille, France
[4] UPMC, LCMC Paris, CNRS, UMR 7574, F-75252 Paris, France
基金
美国国家科学基金会;
关键词
SUPEROXIDE-DISMUTASE; TIO2; NANOPARTICLES; TITANIUM-DIOXIDE; POLY(DIMETHYLSILOXANE); FILMS; IRRADIATION; REDUCTION; MECHANISM; TOXICITY;
D O I
10.1021/es903757q
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A number of commercialized nanomaterials incorporate TiO2 nanoparticles. Studying their structural stability in media mimicking the environment or the conditions of use is crucial in understanding their potential eco-toxicological effects. We focused here on a hydrophobic TiO2 nanoparticle-based formulation used in cosmetics: T-Lite SF. It is composed of a TiO2 core, coated with two successive protective layers of Al(OH)(3), and polydimethylsiloxane. Soon after contact with water (pH = 5, low ionic strength), the T-Lite SF becomes hydrophilic and form aggregates. During this aging, 90%wt of the total Si of the organic layer is desorbed, and the PDMS remaining at the surface is oxidized. The Al(OH)(3) layer is also affected but remains sorbed at the surface. This remaining Al-based layer still protects from the production of superoxide ions from the photoactive/phototoxic TiO2 core in our experimental conditions.
引用
收藏
页码:2689 / 2694
页数:6
相关论文
共 36 条
[21]  
MCCORD JM, 1970, J BIOL CHEM, V245, P1374
[22]  
McGall SJ, 2004, J PHYS CHEM B, V108, P16030, DOI 10.1021/jp0482181
[23]   Exposure modeling of engineered nanoparticles in the environment [J].
Mueller, Nicole C. ;
Nowack, Bernd .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4447-4453
[24]   The photogenotoxicity of titanium dioxide particles [J].
Nakagawa, Y ;
Wakuri, S ;
Sakamoto, K ;
Tanaka, N .
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 1997, 394 (1-3) :125-132
[25]   INFRARED SPECTROSCOPIC STUDY OF SIOX FILMS PRODUCED BY PLASMA ENHANCED CHEMICAL VAPOR-DEPOSITION [J].
PAI, PG ;
CHAO, SS ;
TAKAGI, Y ;
LUCOVSKY, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1986, 4 (03) :689-694
[26]   Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media [J].
Pottier, A ;
Chanéac, C ;
Tronc, E ;
Mazerolles, L ;
Jolivet, JP .
JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (04) :1116-1121
[27]   Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality [J].
Ramalho, JC ;
Marques, NC ;
Semedo, JN ;
Matos, MC ;
Quartin, VL .
PLANT BIOLOGY, 2002, 4 (01) :112-120
[28]   Estimates of Upper Bounds and Trends in Nano-TiO2 Production As a Basis for Exposure Assessment [J].
Robichaud, Christine Ogilvie ;
Uyar, Ali Emre ;
Darby, Michael R. ;
Zucker, Lynne G. ;
Wiesner, Mark R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (12) :4227-4233
[29]   International strategy for nanotechnology research and development [J].
Roco, MC .
JOURNAL OF NANOPARTICLE RESEARCH, 2001, 3 (5-6) :353-360
[30]  
*ROYAL SOC LOND NA, 2004, OPP UNC, V19