Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region

被引:309
作者
Wu, S. [1 ,2 ]
Huang, S. [1 ]
Ding, J. [1 ]
Zhao, Y. [1 ]
Liang, L. [1 ]
Liu, T. [3 ]
Zhan, R. [2 ]
He, X. [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Shanghai Canc Inst, State Key Lab Oncogenes & Related Genes, Shanghai 200032, Peoples R China
[2] Fujian Med Univ, Union Hosp, Fujian Inst Hematol, Dept Hematol, Fuzhou 350001, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Med, Int Peace Matern & Child Hlth Hosp, Shanghai 200032, Peoples R China
关键词
miRNA; p21Cip1/Waf1; 3 ' untranslated region; P21; INHIBITOR; MECHANISM; KINASES; CANCER; GENES;
D O I
10.1038/onc.2010.34
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cyclin-dependent kinase inhibitor 1A ( CDKN1A), also known as p21Cip1/Waf1, is a master downstream effector of tumor suppressors.In this study, we experimentally demonstrate through a high-throughput luciferase reporter screen that p21Cip1/Waf1 can be directly targeted by nearly 28 microRNAs ( miRNAs). The results were further confirmed by a series of mutational analyses and luciferase reporter assays. These 28 miRNAs can substantially inhibit p21Cip1/Waf1 expression, predominantly at translational level. Many of these miRNAs were upregulated in cancers and might serve as modulators of oncogenesis. Furthermore, 8 of these 28 p21-regulating miRNAs are located in the chromosome 19 miRNA cluster, the largest miRNA gene cluster in humans, and they can clearly promote cell proliferation and cell-cycle progression in choriocarcinoma cells. In conclusion, our screening strategy provides an alternative approach to uncovering miRNA modulators of an individual mRNA, and it has identified multiple miRNAs that can suppress p21Cip1/Waf1 expression by directly targeting its 30 untranslated region. Oncogene (2010) 29, 2302-2308; doi: 10.1038/onc.2010.34; published online 1 March 2010
引用
收藏
页码:2302 / 2308
页数:7
相关论文
共 23 条
[1]   p21 in cancer: intricate networks and multiple activities [J].
Abbas, Tarek ;
Dutta, Anindya .
NATURE REVIEWS CANCER, 2009, 9 (06) :400-414
[2]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770
[5]   C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts [J].
Bortolin-Cavaille, Marie-Line ;
Dance, Marie ;
Weber, Michel ;
Cavaille, Jerome .
NUCLEIC ACIDS RESEARCH, 2009, 37 (10) :3464-3473
[6]   Transcriptional regulation of the p21(WAF1/ClP1) gene [J].
Gartel, AL ;
Tyner, AL .
EXPERIMENTAL CELL RESEARCH, 1999, 246 (02) :280-289
[7]   Micro-RNA profiling in kidney and bladder cancers [J].
Gottardo, Fedra ;
Liu, Chang Gong ;
Ferracin, Manuela ;
Calin, George A. ;
Fassan, Mattect ;
Bassi, Pierfrancesco ;
Sevignani, Cinzia ;
Byrne, Dolores ;
Negrini, Massimo ;
Pagano, Francesco ;
Gomella, Leonard G. ;
Croce, Carlo M. ;
Baffa, Raffaele .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2007, 25 (05) :387-392
[8]   CDKN2A, NF2, and JUN Are Dysregulated Among Other Genes by miRNAs in Malignant Mesothelioma-A miRNA Microarray Analysis [J].
Guled, Mohamed ;
Lahti, Leo ;
Lindholm, Pamela M. ;
Salmenkivi, Kaisa ;
Bagwan, Izhar ;
Nicholson, Andrew G. ;
Knuutila, Sakari .
GENES CHROMOSOMES & CANCER, 2009, 48 (07) :615-623
[9]  
HARPER JW, 1993, CELL, V75, P805
[10]   MirZ: an integrated microRNA expression atlas and target prediction resource [J].
Hausser, Jean ;
Berninger, Philipp ;
Rodak, Christoph ;
Jantscher, Yvonne ;
Wirth, Stefan ;
Zavolan, Mihaela .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W266-W272