Tuning the lateral density of ZnO nanowire arrays and its application as physical templates for radial nanowire heterostructures

被引:27
作者
Cao, B. Q. [1 ,2 ]
Zuniga-Perez, J. [2 ]
Czekalla, C. [2 ]
Hilmer, H. [2 ]
Lenzner, J. [2 ]
Boukos, N. [3 ]
Travlos, A.
Lorenz, M. [2 ]
Grundmann, M. [2 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Shandong 250022, Peoples R China
[2] Univ Leipzig, Fak Phys & Geowissensch, Inst Expt Phys 2, D-04103 Leipzig, Germany
[3] Natl Ctr Sci Res Demokritos, Inst Mat Sci, GR-15310 Athens, Greece
关键词
PULSED-LASER DEPOSITION; CONTROLLED GROWTH; FIELD-EMISSION; OPTICAL-PROPERTIES; PATTERNED GROWTH; NANORODS; COST;
D O I
10.1039/b926475b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lateral density of ZnO nanowire arrays grown with pulsed laser deposition (PLD) can be tuned from 1 to 10(-2) mu m(-2) by introducing a ZnO nucleation layer and optimizing the distance between the substrate and the ablated target. High-density (similar to 10 mu m(-2)) nanowire arrays can be grown on sapphire substrates with or without gold catalysts. However, if a ZnO wetting layer was adopted, the density of ZnO nanowires could be controlled with high reproducibility. The decreasing growth density is attributed to a competition between the two-dimensional film epitaxy and one-dimensional nanowire growth. The dependence of nanowire density on the substrate-target distance mainly arises from the expansion dynamics of the plasma plume and the chamber geometry. Using low-density nanowires as templates, a general PLD route was developed to grow radial nanowire heterostructures. Here we demonstrate MgZnO/ZnO/MgZnO nanowire quantum wells and ZnO/ZnO:P core-shell nanowire p-n junctions.
引用
收藏
页码:3848 / 3854
页数:7
相关论文
共 49 条
[11]   Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition [J].
Heitsch, S. ;
Zimmermann, G. ;
Fritsch, D. ;
Sturm, C. ;
Schmidt-Grund, R. ;
Schulz, C. ;
Hochmuth, H. ;
Spemann, D. ;
Benndorf, G. ;
Rheinlaender, B. ;
Nobis, Th. ;
Lorenz, M. ;
Grundmann, M. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (08)
[12]   Novel semiconducting nanowire heterostructures: synthesis, properties and applications [J].
Hu, Junqing ;
Bando, Yoshio ;
Golberg, Dmitri .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (03) :330-343
[13]  
HUANG DK, 2005, APPL PHYS LETT, V86
[14]   Role of surface diffusion in chemical beam epitaxy of InAs nanowires [J].
Jensen, LE ;
Björk, MT ;
Jeppesen, S ;
Persson, AI ;
Ohlsson, BJ ;
Samuelson, L .
NANO LETTERS, 2004, 4 (10) :1961-1964
[15]   High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition [J].
Kaidashev, EM ;
Lorenz, M ;
von Wenckstern, H ;
Rahm, A ;
Semmelhack, HC ;
Han, KH ;
Benndorf, G ;
Bundesmann, C ;
Hochmuth, H ;
Grundmann, M .
APPLIED PHYSICS LETTERS, 2003, 82 (22) :3901-3903
[16]   Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells -: art. no. 114302 [J].
Kayes, BM ;
Atwater, HA ;
Lewis, NS .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
[17]   Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour-liquid-solid process [J].
Kirkham, Melanie ;
Wang, Xudong ;
Wang, Zhong Lin ;
Snyder, Robert L. .
NANOTECHNOLOGY, 2007, 18 (36)
[18]   ZnO: From basics towards applications [J].
Klingshirn, C. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (09) :3027-3073
[19]   Control of ZnO nanorod array density by Zn supersaturation variation and effects on field emission [J].
Kumar, R. T. Rajendra ;
McGlynn, Enda ;
McLoughlin, Conor ;
Chakrabarti, Subhananda ;
Smith, Richard C. ;
Carey, J. David ;
Mosnier, J. P. ;
Henry, Martin O. .
NANOTECHNOLOGY, 2007, 18 (21)
[20]   Pulsed electrodeposition of large-area, ordered Bi1-xSbx nanowire arrays from aqueous solutions [J].
Li, L ;
Li, GH ;
Zhang, Y ;
Yang, YW ;
Zhang, LD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (50) :19380-19383