Role of the platinum nanoclusters in the iodide/triiodide redox system of dye solar cells

被引:67
作者
Boennemann, Helmut
Khelashvili, Guram
Behrens, Silke
Hinsch, Andreas
Skupien, Krzysztof
Dinjus, Eckhard
机构
[1] Forschungszentrum Karlsruhe, ITC CPV, D-76021 Karlsruhe, Germany
[2] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[3] Heidelberg Univ, D-69117 Heidelberg, Germany
[4] Fraunhofer Inst Solar Energy Syst, D-79110 Freiburg, Germany
[5] Cracow Univ Technol, PL-31864 Krakow, Poland
关键词
counter electrode; dye solar cells; iodide-triiodide reduction; Platinum clusters;
D O I
10.1007/s10876-006-0092-7
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The publication covers materials and cluster science aspects of the platinum counter electrode (CE) in the "monolithic type" dye sensitized solar cell systems (DSSC). Nanocluster based catalytic platinum layers are utilized for the iodide/triiodide reduction in different electrolytes. Various preparative methods have been applied for the preparation of platinum nanoparticles for the CE. The structure, properties, and performance of the different nanoparticles obtained by thermal decomposition of H2PtCl6, triorganohydroborate reduction of a platinum salt, reductive stabilization of Pt(acac)(2) by trialkylaluminium, the "polyol method", and the reduction of the H2PtCl6 by hydrogen are compared. The oxidation states of the platinum surface- and core-atoms were analyzed by X-Ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Near Edge Structure (XANES) respectively. Size and the crystalline structure of the particles were investigated by Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD). The charge transfer resistance of the different catalytic platinum layers resulted from the above mentioned preparative methods, was compared by electrochemical impedance spectroscopy (EIS).
引用
收藏
页码:141 / 155
页数:15
相关论文
共 76 条
[21]   Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells [J].
Fang, XM ;
Ma, TL ;
Akiyama, M ;
Guan, GQ ;
Tsunematsu, S ;
Abe, E .
THIN SOLID FILMS, 2005, 472 (1-2) :242-245
[22]   Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness [J].
Fang, XM ;
Ma, TL ;
Guan, GQ ;
Akiyama, M ;
Abe, E .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 164 (1-3) :179-182
[23]   Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell [J].
Fang, XM ;
Ma, TL ;
Guan, GQ ;
Akiyama, M ;
Kida, T ;
Abe, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 570 (02) :257-263
[24]   HOMOGENEOUS AND HETEROGENEOUS NUCLEATIONS IN THE POLYOL PROCESS FOR THE PREPARATION OF MICRON AND SUB-MICRON SIZE METAL PARTICLES [J].
FIEVET, F ;
LAGIER, JP ;
BLIN, B ;
BEAUDOIN, B ;
FIGLARZ, M .
SOLID STATE IONICS, 1989, 32-3 :198-205
[25]   Are dye-sensitized nano-structured solar cells stable? An overview of device testing and component analyses [J].
Figgemeier, E ;
Hagfeldt, A .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2004, 6 (03) :127-140
[26]  
FIGLARZ M, 1983, Patent No. 8221483
[27]  
GERISCHER H, 1972, PHOTOCHEM PHOTOBIOL, V16, P243
[28]   Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J].
Grätzel, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 164 (1-3) :3-14
[29]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[30]   Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system [J].
Greijer, H ;
Karlson, L ;
Lindquist, SE ;
Hagfeldt, A .
RENEWABLE ENERGY, 2001, 23 (01) :27-39