Carbon dioxide storage through mineral carbonation

被引:548
作者
Snaebjornsdottir, Sandra O. [1 ]
Sigfusson, Bergur [1 ]
Marieni, Chiara [2 ]
Goldberg, David [3 ]
Gislason, Sigurdur R. [4 ]
Oelkers, Eric H. [2 ,4 ,5 ]
机构
[1] Orkuveita Reykjavikur, Reykjavik, Iceland
[2] Univ Paul Sabatier, UMR 5563, CNRS, GET, Toulouse, France
[3] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA
[4] Univ Iceland, Inst Earth Sci, Reykjavik, Iceland
[5] UCL, Dept Earth Sci, London, England
基金
欧盟地平线“2020”;
关键词
BASALTIC GLASS DISSOLUTION; IN-SITU MINERALIZATION; FORSTERITE DISSOLUTION; CO2; SEQUESTRATION; AIR CAPTURE; CONDITIONS RELEVANT; GEOLOGICAL STORAGE; CHRYSOTILE MINE; OCEANIC-CRUST; DISSOLVED CO2;
D O I
10.1038/s43017-019-0011-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon capture and storage has a fundamental role in limiting anthropogenic warming to 1.5-2 degrees C. This Review discusses the basis, potential and limitations of in situ mineral carbonation as a carbon capture and storage strategy. Carbon capture and storage (CCS) has a fundamental role in achieving the goals of the Paris Agreement to limit anthropogenic warming to 1.5-2 degrees C. Most ongoing CCS projects inject CO2 into sedimentary basins and require an impermeable cap rock to prevent the CO2 from migrating to the surface. Alternatively, captured carbon can be stored through injection into reactive rocks (such as mafic or ultramafic lithologies), provoking CO2 mineralization and, thereby, permanently fixing carbon with negligible risk of return to the atmosphere. Although in situ mineralization offers a large potential volume for carbon storage in formations such as basalts and peridotites (both onshore and offshore), its large-scale implementation remains little explored beyond laboratory-based and field-based experiments. In this Review, we discuss the potential of mineral carbonation to address the global CCS challenge and contribute to long-term reductions in atmospheric CO2. Emphasis is placed on the advances in making this technology more cost-effective and in exploring the limits and global applicability of CO2 mineralization.
引用
收藏
页码:90 / 102
页数:13
相关论文
共 121 条
[1]   Estimating geological CO2 storage security to deliver on climate mitigation [J].
Alcalde, Juan ;
Flude, Stephanie ;
Wilkinson, Mark ;
Johnson, Gareth ;
Edlmann, Katriona ;
Bond, Clare E. ;
Scott, Vivian ;
Gilfillan, Stuart M. V. ;
Ogaya, Xenia ;
Haszeldine, R. Stuart .
NATURE COMMUNICATIONS, 2018, 9
[2]   The uptake of carbon during alteration of ocean crust [J].
Alt, JC ;
Teagle, DAH .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1999, 63 (10) :1527-1535
[3]  
[Anonymous], 2019, FITN CHECK WAT FRAM
[4]  
[Anonymous], 2017, WORLD EN OUTL
[5]  
[Anonymous], 2018, Global Warming of 1.5 oC, P15, DOI DOI 10.1093/JICRU/OS8.2.REPORT15
[6]   Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland [J].
Aradottir, E. S. P. ;
Sonnenthal, E. L. ;
Bjornsson, G. ;
Jonsson, H. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 :24-40
[7]   Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks [J].
Aradottir, E. S. P. ;
Sonnenthal, E. L. ;
Jonsson, H. .
CHEMICAL GEOLOGY, 2012, 304 :26-38
[8]   CarbFix - public engagement and transparency [J].
Aradottir, Edda Sif Pind ;
Hjalmarsson, Eirikur .
CARBON IN NATURAL AND ENGINEERED PROCESSES, 2018, 146 :115-120
[9]   DISSOLUTION KINETICS OF CHRYSOTILE AT PH 7 TO 10 [J].
BALES, RC ;
MORGAN, JJ .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1985, 49 (11) :2281-2288
[10]   ROLE OF SURFACE SPECIATION IN THE LOW-TEMPERATURE DISSOLUTION OF MINERALS [J].
BLUM, A ;
LASAGA, A .
NATURE, 1988, 331 (6155) :431-433