Improved bounds for planar k-sets and related problems

被引:157
作者
Dey, TK [1 ]
机构
[1] Indian Inst Technol, Dept Comp Sci & Engn, Kharagpur 721302, W Bengal, India
关键词
D O I
10.1007/PL00009354
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove an O(n(k + 1)(1/3)) upper bound for planar k-sets. This is the first considerable improvement on this bound after its early solution approximately 27 years ago. Our proof technique also applies to improve the current bound; on the combinatorial complexities of k-levels in the arrangement of line segments, k convex polygons in the union of n lines, parametric minimum spanning trees, and parametric matroids in general.
引用
收藏
页码:373 / 382
页数:10
相关论文
共 29 条
[1]  
Agarwal P. K., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P30, DOI 10.1145/262839.262856
[2]   THE NUMBER OF SMALL SEMISPACES OF A FINITE-SET OF POINTS IN THE PLANE [J].
ALON, N ;
GYORI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (01) :154-157
[3]  
ALON N, 1992, COMB PROBAB COMPUT, V1, P295
[4]  
[Anonymous], 1982, Annals of Discrete Mathematics
[5]   POINTS AND TRIANGLES IN THE PLANE AND HALVING PLANES IN SPACE [J].
ARONOV, B ;
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :435-442
[6]   ON THE EXPECTED NUMBER OF K-SETS [J].
BARANY, I ;
STEIGER, W .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (03) :243-263
[7]  
BARANY I, 1990, COMBINATORICA, V10, P140
[8]   HALF-SPACE RANGE SEARCH - AN ALGORITHMIC APPLICATION OF K-SETS [J].
CHAZELLE, B ;
PREPARATA, FP .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) :83-93
[9]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[10]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421