ON THE EXPECTED NUMBER OF K-SETS

被引:8
作者
BARANY, I [1 ]
STEIGER, W [1 ]
机构
[1] RUTGERS STATE UNIV, DEPT COMP SCI, PISCATAWAY, NJ 08903 USA
关键词
D O I
10.1007/BF02574008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set S of n points in R(d), a subset X of size d is called a k-simplex if the hyperplane aff(X) has exactly k points on one side. We study E(d)(k, n), the expected number of k-simplices when S is a random sample of n-points from a probability distribution P on R(d). When P is spherically symmetric we prove that E(d)(k, n) less-than-or-equal-to cn(d-1). When P is uniform on a convex body K subset-of R2 we prove that E2(k, n) is asymptotically linear in the range cn less-than-or-equal-to k less-than-or-equal-to n/2 and when k is constant it is asymptotically the expected number of vertices on the convex hull of S. Finally, we construct a distribution P on R2 for which E2((n - 2)/2, n) is cn log n.
引用
收藏
页码:243 / 263
页数:21
相关论文
共 23 条
[1]   THE NUMBER OF SMALL SEMISPACES OF A FINITE-SET OF POINTS IN THE PLANE [J].
ALON, N ;
GYORI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (01) :154-157
[2]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[3]  
[Anonymous], 1963, P S PURE MATH
[4]   POINTS AND TRIANGLES IN THE PLANE AND HALVING PLANES IN SPACE [J].
ARONOV, B ;
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :435-442
[5]   INTRINSIC VOLUMES AND F-VECTORS OF RANDOM POLYTOPES [J].
BARANY, I .
MATHEMATISCHE ANNALEN, 1989, 285 (04) :671-699
[6]   CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES [J].
BARANY, I ;
LARMAN, DG .
MATHEMATIKA, 1988, 35 (70) :274-291
[7]   ON THE NUMBER OF HALVING PLANES [J].
BARANY, I ;
FUREDI, Z ;
LOVASZ, L .
COMBINATORICA, 1990, 10 (02) :175-183
[8]  
BARANY I, 1990, 2ND P CAN C COMP GEO, P55
[9]  
DEY T, 1992, COUNTING SIMPLEX CRO
[10]   ON THE NUMBER OF LINE SEPARATIONS OF A FINITE-SET IN THE PLANE [J].
EDELSBRUNNER, H ;
WELZL, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 38 (01) :15-29