Ponzano-Regge model revisited: I. Gauge fixing, observables and interacting spinning particles

被引:136
作者
Freidel, L
Louapre, D
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2G9, Canada
[2] Ecole Normale Super Lyon, Phys Lab, UMR 5672, CNRS, F-69364 Lyon 07, France
关键词
D O I
10.1088/0264-9381/21/24/002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show how to properly gauge fix all the symmetries of the Ponzano-Regge model for 3D quantum gravity. This amounts to doing explicit finite computations for transition amplitudes. We give the construction of the transition amplitudes in the presence of interacting quantum spinning particles. We introduce a notion of operators whose expectation value gives rise to either gauge fixing, introduction of time, or insertion of particles, according to the choice. We give the link between the spin foam quantization and the Hamiltonian quantization. We finally show the link between the Ponzano-Regge model and the quantization of Chern-Simons theory based on the double quantum group of SU(2).
引用
收藏
页码:5685 / 5726
页数:42
相关论文
共 65 条
[1]   Combinatorial quantization of the Hamiltonian Chern-Simons theory .2. [J].
Alekseev, AY ;
Grosse, H ;
Schomerus, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 174 (03) :561-604
[2]   PROJECTIVE TECHNIQUES AND FUNCTIONAL-INTEGRATION FOR GAUGE-THEORIES [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2170-2191
[3]  
ASHTEKAR A, 2001, GRQC0112038
[4]   Quantization of diffeomorphism-invariant theories with fermions [J].
Baez, JC ;
Krasnov, KV .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1251-1271
[5]   Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity [J].
Bais, FA ;
Muller, NM ;
Schroers, BJ .
NUCLEAR PHYSICS B, 2002, 640 (1-2) :3-45
[6]   Relativistic spin networks and quantum gravity [J].
Barrett, JW ;
Crane, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3296-3302
[7]   A Lorentzian signature model for quantum general relativity [J].
Barrett, JW ;
Crane, L .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (16) :3101-3118
[8]   Geometrical measurements in three-dimensional quantum gravity [J].
Barrett, JW .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 :97-113
[9]   Hamiltonian quantization of Chern-Simons theory with SL(2,C) group [J].
Buffenoir, E ;
Noui, K ;
Roche, P .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (19) :4953-5015
[10]   2-DIMENSIONAL LATTICE GAUGE-THEORY BASED ON A QUANTUM GROUP [J].
BUFFENOIR, E ;
ROCHE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (03) :669-698