Magnetic field switching of nanoparticles between orthogonal microfluidic channels

被引:20
作者
Latham, Andrew H. [1 ]
Tarpara, Anand N. [1 ]
Williams, Mary Elizabeth [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
关键词
D O I
10.1021/ac070520d
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reports on the manipulation of magnetic nanoparticles between microfluidic channels by the application of an external magnet. Two orthogonal channels were prepared using standard PDMS techniques with pressure-driven flow used to deliver the mobile phase. To study the ability to control magnetic nanoparticles within micrometer-sized channels, Fe2O3, MnFe2O4, and Au nanoparticle samples were compared. For the magnetic particles, transfer between flow streams is greatly increased by placing a permanent magnet beneath the intersection of the channels, but no change is observed for the nonmagnetic Au particles. More nanoparticles are magnetically transferred into the orthogonal channel as the solvent flow rate decreases. We demonstrate the ability to use this technique to perform multiple injections of plugs of magnetic particles by periodic application of a magnetic field.
引用
收藏
页码:5746 / 5752
页数:7
相关论文
共 66 条
[1]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[2]   Functionalisation of magnetic nanoparticles for applications in biomedicine [J].
Berry, CC ;
Curtis, ASG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (13) :R198-R206
[3]   Micromixing with linked chains of paramagnetic particles [J].
Biswal, SL ;
Gast, AP .
ANALYTICAL CHEMISTRY, 2004, 76 (21) :6448-6455
[4]   Protein separations using colloidal magnetic nanoparticles [J].
Bucak, S ;
Jones, DA ;
Laibinis, PE ;
Hatton, TA .
BIOTECHNOLOGY PROGRESS, 2003, 19 (02) :477-484
[5]   S1 nuclease protection assay using streptavidin dynabeads-purified single-stranded DNA [J].
Cammas, FM ;
Clark, AJL .
ANALYTICAL BIOCHEMISTRY, 1996, 236 (01) :182-184
[6]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[7]   Development and Characterization of Microfluidic Devices and Systems for Magnetic Bead-Based Biochemical Detection [J].
Choi, Jin-Woo ;
Oh, Kwang W. ;
Han, Arum ;
Okulan, Nihat ;
Wijayawardhana, C. Ajith ;
Lannes, Chad ;
Bhansali, Shekhar ;
Schlueter, Kevin T. ;
Heineman, William R. ;
Halsall, H. Brain ;
Nevin, Joseph H. ;
Helmicki, Arthur J. ;
Henderson, H. Thurman ;
Ahn, Chong H. .
BIOMEDICAL MICRODEVICES, 2001, 3 (03) :191-200
[8]   A microchip-based multianalyte assay system for the assessment of cardiac risk [J].
Christodoulides, N ;
Tran, M ;
Floriano, PN ;
Rodriguez, M ;
Goodey, A ;
Ali, M ;
Neikirk, D ;
McDevitt, JT .
ANALYTICAL CHEMISTRY, 2002, 74 (13) :3030-3036
[9]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[10]   Fabrication of magnetic microfiltration systems using soft lithography [J].
Deng, T ;
Prentiss, M ;
Whitesides, GM .
APPLIED PHYSICS LETTERS, 2002, 80 (03) :461-463