Short interfering RNAs as a tool for cancer gene therapy

被引:153
作者
Izquierdo, M [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Ctr Biol Mol Severo Ochoa, Dept Mol Biol, E-28049 Madrid, Spain
关键词
RNAi; review; gene target; siRNA;
D O I
10.1038/sj.cgt.7700791
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There are mainly two types of short RNAs that target complementary messengers in animals: small interfering RNAs and microRNAs. Both are produced by the cleavage of double-stranded RNA precursors by Dicer, a member of the Rnase III family of double-stranded specific endonucleases, and both guide the RNA-induced silencing complex to cleave specifically RNAs sharing sequence identity with them. In designing a particular RNA interference (RNAi), it is important to identify the sense/antisense combination that provides the most potent suppression of the target mRNA, and several rules have been established to give >90% gene expression inhibition. RNAi technology can be directed against cancer using a variety of strategies. These include the inhibition of overexpressed oncogenes, blocking cell division by interfering with cyclin E and related genes or promoting apoptosis by suppressing antiapoptotic genes. RNAi against multidrug resistance genes or chemoresistance targets may also provide useful cancer treatments. Studies investigating these approaches in preclinical models are also reviewed.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 114 条
[1]   Survivin, versatile modulation of cell division and apoptosis in cancer [J].
Altieri, DC .
ONCOGENE, 2003, 22 (53) :8581-8589
[2]   Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes [J].
Amatschek, S ;
Koenig, U ;
Auer, H ;
Steinlein, P ;
Pacher, M ;
Gruenfelder, A ;
Dekan, G ;
Vogl, S ;
Kubista, E ;
Heider, KH ;
Stratowa, C ;
Schreiber, M ;
Sommergruber, W .
CANCER RESEARCH, 2004, 64 (03) :844-856
[3]  
Ambros Victor, 2004, Methods Mol Biol, V265, P131
[4]  
AUKERMAN MJ, 2003, PLANT CELL, V10, P10
[5]   MicroRNAs: At the root of plant development? [J].
Bartel, B ;
Bartel, DP .
PLANT PHYSIOLOGY, 2003, 132 (02) :709-717
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   Human let-7 stem-loop precursors harbor features of RNase III cleavage products [J].
Basyuk, E ;
Suavet, F ;
Doglio, A ;
Bordonné, R ;
Bertrand, E .
NUCLEIC ACIDS RESEARCH, 2003, 31 (22) :6593-6597
[8]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[9]   bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J].
Brennecke, J ;
Hipfner, DR ;
Stark, A ;
Russell, RB ;
Cohen, SM .
CELL, 2003, 113 (01) :25-36
[10]   Induction of an interferon response by RNAi vectors in mammalian cells [J].
Bridge, AJ ;
Pebernard, S ;
Ducraux, A ;
Nicoulaz, AL ;
Iggo, R .
NATURE GENETICS, 2003, 34 (03) :263-264