Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles

被引:88
作者
Choi, Min Gyu [1 ,2 ]
Lee, Young-Gi [1 ]
Song, Seung-Wan [2 ]
Kim, Kwang Man [1 ]
机构
[1] ETRI, Res Team Power Control Devices, Taejon 305700, South Korea
[2] Chungnam Natl Univ, Dept Fine Chem Engn & Appl Chem, Taejon 305764, South Korea
关键词
TiO2; nanotube; Hydrothermal synthesis; Anode properties; Li-ion batteries; ELECTROCHEMICAL CHARACTERIZATION; ELECTRODE MATERIAL; TITANIA NANOTUBES; INSERTION; STORAGE; NANOSTRUCTURES; NANOWIRES; NANORODS; INTERCALATION;
D O I
10.1016/j.electacta.2010.05.052
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
From mixed (anatase and rutile) bulk particles, anatase TiO2 nanotubes are synthesized in this study by an alkaline hydrothermal reaction and a consequent annealing at 300-400 degrees C. The physical and electrochemical properties of the TiO2 nanotube are investigated for use as an anode active material for lithium-ion batteries. Upon the first discharge-charge sweep and simultaneous impedance measurements at local potentials, this study shows that interfacial resistance decreases significantly when passing lithium ions through a solid electrolyte interface layer at the lithium insertion/deinsertion plateaus of 1.75/2.0V, corresponding to the redox potentials of anatase TiO2 nanotubes. For an anatase TiO2 nanotube containing minor TiO2(B) phase obtained after annealing at 300 degrees C, the high-rate capability can be strongly enhanced by an isotropic dispersion of TiO2 nanotubes to yield a discharge capacity higher than 150 mAh g(-1), even upon 100 cycles of 10 C-rate discharge-charge operations. This is suitable for use as a high-power anode material for lithium-ion batteries. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5975 / 5983
页数:9
相关论文
共 31 条
[21]   Nanocrystalline TiO2 (anatase) for Li-ion batteries [J].
Subramanian, V. ;
Karki, A. ;
Gnanasekar, K. I. ;
Eddy, Fannie Posey ;
Rambabu, B. .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :186-192
[22]   Electrochemical lithium reactivity with nanotextured anatase-type TiO2 [J].
Sudant, G ;
Baudrin, E ;
Larcher, D ;
Tarascon, JM .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (12) :1263-1269
[23]   Issues and challenges facing rechargeable lithium batteries [J].
Tarascon, JM ;
Armand, M .
NATURE, 2001, 414 (6861) :359-367
[24]   The life and times of lithium in anatase TiO2 [J].
Wagemaker, M ;
van Well, AA ;
Kearley, GJ ;
Mulder, FM .
SOLID STATE IONICS, 2004, 175 (1-4) :191-193
[25]   Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion [J].
Wang, Donghai ;
Choi, Daiwon ;
Li, Juan ;
Yang, Zhenguo ;
Nie, Zimin ;
Kou, Rong ;
Hu, Dehong ;
Wang, Chongmin ;
Saraf, Laxmikant V. ;
Zhang, Jiguang ;
Aksay, Ilhan A. ;
Liu, Jun .
ACS NANO, 2009, 3 (04) :907-914
[26]   Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures [J].
Wang, Qiang ;
Wen, Zhenhai ;
Li, Jinghong .
INORGANIC CHEMISTRY, 2006, 45 (17) :6944-6949
[27]   Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries [J].
Wang, Yunfei ;
Wu, Muying ;
Zhang, W. F. .
ELECTROCHIMICA ACTA, 2008, 53 (27) :7863-7868
[28]   Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries [J].
Xu, Jinwei ;
Jia, Caihong ;
Cao, Bin ;
Zhang, W. F. .
ELECTROCHIMICA ACTA, 2007, 52 (28) :8044-8047
[29]   Electrochemical lithium storage of titanate and titania nanotubes and nanorods [J].
Zhang, H. ;
Li, G. R. ;
An, L. P. ;
Yan, T. Y. ;
Gao, X. P. ;
Zhu, H. Y. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (16) :6143-6148
[30]   Titania nanotube supported tin anodes for lithium intercalation [J].
Zhao, Z. W. ;
Guo, Z. P. ;
Wexler, D. ;
Ma, Z. F. ;
Wu, X. ;
Liu, H. K. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :697-702