Phage integrases for the construction and manipulation of transgenic mammals

被引:61
作者
Roger P Hollis
Stephanie M Stoll
Christopher R Sclimenti
Jennifer Lin
Yanru Chen-Tsai
Michele P Calos
机构
[1] Department of Genetics, Stanford Univ. School of Medicine, Stanford
[2] Children's Hospital of Los Angeles, Dept. of Research Immunology/BMT, Los Angeles, CA 90027
[3] Univ. of California San Francisco, Department of Surgery, San Fracisco, CA 94122-0522
[4] Poetic Genetics LLC, Burlingame, CA 94010
[5] Stanford Transgenic Res. Facility, Stanford Univ. School of Medicine, Stanford
关键词
Chromosomal Deletion; Donor Plasmid; attB Site; attP Site; Phage Integrases;
D O I
10.1186/1477-7827-1-79
中图分类号
学科分类号
摘要
Phage integrases catalyze site-specific, unidirectional recombination between two short att recognition sites. Recombination results in integration when the att sites are present on two different DNA molecules and deletion or inversion when the att sites are on the same molecule. Here we demonstrate the ability of the φC31 integrase to integrate DNA into endogenous sequences in the mouse genome following microinjection of donor plasmid and integrase mRNA into mouse single-cell embryos. Transgenic early embryos and a mid-gestation mouse are reported. We also demonstrate the ability of the φC31, R4, and TP901-1 phage integrases to recombine two introduced att sites on the same chromosome in human cells, resulting in deletion of the intervening material. We compare the frequencies of mammalian chromosomal deletion catalyzed by these three integrases in different chromosomal locations. The results reviewed here introduce these bacteriophage integrases as tools for site-specific modification of the genome for the creation and manipulation of transgenic mammals. © 2003 Hollis et al; licensee BioMed Central Ltd.
引用
收藏
页数:11
相关论文
共 44 条
[11]  
Wang B., Lazaris A., Lindenbaum M., Stewart S., Co D., Perez C., Drayer J., Karatzas C.N., Expression of a reporter gene after microinjection of mammalian artificial chromosomes into pronuclei of bovine zygotes, Mol. Reprod. Dev., 60, pp. 433-438, (2001)
[12]  
Nagano M., Brinster C.J., Orwig K.E., Ryu B.Y., Avarbock M.R., Brinster R.L., Transgenic mice produced by retroviral transduction of male germ-line stem cells, Proc. Natl. Acad. Sci. U S A, 98, pp. 13090-13095, (2001)
[13]  
Nagano M., Watson D.J., Ryu B.Y., Wolfe J.H., Brinster R.L., Lentiviral vector transduction of male germ line stem cells in mice, FEBS Lett., 524, pp. 111-115, (2002)
[14]  
Lois C., Hong E.J., Pease S., Brown E.J., Baltimore D., Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science, 295, pp. 868-872, (2002)
[15]  
Dupuy A.J., Clark K., Carlson C.M., Fritz S., Davidson A.E., Markley K.M., Finley K., Fletcher C.F., Ekker S.C., Hackett P.B., Horn S., Largaespada D.A., Mammalian germ-line transgenesis by transposition, Proc. Natl. Acad. Sci. U. S. A., 99, pp. 4495-4499, (2002)
[16]  
Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H., Viable offspring derived from fetal and adult mammalian cells, Nature, 385, pp. 810-813, (1997)
[17]  
Rideout III W.M., Hochedlinger K., Kyba M., Daley G.Q., Jaenisch R., Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy, Cell, 109, pp. 17-27, (2002)
[18]  
Nagy A., Moens C., Ivanyi E., Pawling J., Gertsenstein M., Hadjantonakis A.K., Pirity M., Rossant J., Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles, Curr. Biol., 8, pp. 661-664, (1998)
[19]  
Dobie K., Mehtali M., McClenaghan M., Lathe R., Variegated gene expression in mice, Trends Genet., 13, pp. 127-130, (1997)
[20]  
Garrick D., Fiering S., Martin D.I., Whitelaw E., Repeat-induced gene silencing in mammals, Nat. Genet., 18, pp. 56-59, (1998)